Minimal inhibitory concentration (MIC) of sodium hypochlorit against bacterial isolate from equipment in the microbiology laboratory
Main Article Content
Abstract
Microbiology laboratory equipment is susceptible to bacterial contamination and therefore has the potential to become a medium for the spread of disease and infection. The existence of a less than sterile microbiological analysis process in the STIKes Karsa Husada Garut Microbiology Laboratory causes bacterial contamination of laboratory equipment such as bacterial analysis that does not comply with standards or the use of less than sterile equipment. To control the spread of contaminants, a decontamination process is required using a chemical disinfectant, namely sodium hypochlorite. Measuring the effectiveness of a disinfectant by looking at or can be determined by the Minimum Inhibitory Concentration (MIC). The aim of this research was to determine the effectiveness of sodium hypochlorite disinfectant in inhibiting the growth of microorganisms in bacterial isolates from the STIKes Karsa Husada Garut Microbiology Laboratory equipment. The data analysis used was analyzed descriptively. The results of this research are the Minimum Inhibitory Concentration (MIC) of sodium hypochlorite disinfectant on bacterial isolates from the STIKes Karsa Husada Garut Microbiology Laboratory equipment at a concentration of 4%. So it can be concluded that sodium hypochlorite disinfectant with a concentration of 4% is effective in inhibiting the growth of microorganisms.
Article Details
Abdullah Yahya Al-Beshari, K. et al. (2018) ‘The Impact of Diluted Detergents on Escherichia coli K12 (JM109)’, International Journal of Sciences: Basic and Applied Research (IJSBAR) International Journal of Sciences: Basic and Applied Research, 39(1), pp. 184–193. Available at: http://gssrr.org/index.php?journal=JournalOfBasicAndApplied.
de Andrade, F. P. and Pereira, C. de B. (2020) ‘Use of chlorine solutions as disinfectant agents in health units to contain the spread of COVID-19 Uso de soluções de cloro ativo como agente desinfetante em unidades de saúde para conter a propagação do COVID-19’, Journal of Health & Biological Sciences, 8(1), pp. 1–9. doi: 10.12662/2317-3206jhbs.v8i1.3256.p1-9.2020.
Artasensi, A., Mazzotta, S. and Fumagalli, L. (2021) ‘Back to basics: Choosing the appropriate surface disinfectant’, Antibiotics, 10(6). doi: 10.3390/antibiotics10060613.
Ayub, A. et al. (2024) ‘Use of Hydrogen Peroxide Vapour for Microbiological Disinfection in Hospital Environments: A Review’, Bioengineering, 11(3), pp. 1–16. doi: 10.3390/bioengineering11030205.
Chauhan, A. and Jindal, T. (2020) ‘Equipments and Instruments for Microbiological Laboratories’, in Microbiological Methods for Environment, Food and Pharmaceutical Analysis. Spinger, Cham, pp. 73–85. doi: 10.1007/978-3-030-52024-3_5.
Chikezie, I. O. (2017) ‘Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using a novel dilution tube method’, African Journal of Microbiology Research, 11(23), pp. 977–980. doi: 10.5897/ajmr2017.8545.
Emdiyono, S. V. and Triyantoro, B. (2018) ‘Pengaruh Pemberian Karbol Sebagaidesinfektan Terhadap Jumlah Angka Kuman Pada Lantai Ruang Parikesit Kelas Iii Rumah Sakit Tk Iii.04.06.01 Wijayakusuma Purwokerto Tahun 2017’, Buletin Keslingmas, 37(4), pp. 512–518. doi: 10.31983/keslingmas.v37i4.3804.
Gebel, J. et al. (2013) ‘The role of surface disinfection in infection prevention.’, GMS hygiene and infection control, 8(1), p. Doc10. doi: 10.3205/dgkh000210.
Geraldes, C. et al. (2021) ‘Evaluation of a biocide used in the biological isolation and containment unit of a veterinary teaching hospital’, Antibiotics, 10(6), pp. 1–16. doi: 10.3390/antibiotics10060639.
Gomes, I. B., Simões, M. and Simões, L. C. (2016) ‘The effects of sodium hypochlorite against selected drinking water-isolated bacteria in planktonic and sessile states’, Science of the Total Environment. Elsevier B.V., 565, pp. 40–48. doi: 10.1016/j.scitotenv.2016.04.136.
Köhler, A. T. et al. (2018) ‘Efficacy of sodium hypochlorite against multidrug-resistant Gram-negative bacteria’, Journal of Hospital Infection. The Healthcare Infection Society, 100(3), pp. e40–e46. doi: 10.1016/j.jhin.2018.07.017.
Maneea, A. S. Bin et al. (2023) ‘Microbiological Effect of Various Concentrations of Sodium Hypochlorite (NaOCL) During Endodontic Treatment: A Systematic Review’, Annals of Dental Specialty, 11(1), pp. 95–101. doi: 10.51847/7cztguksh9.
Osimitz, T. G. and Droege, W. (2021) ‘Quaternary ammonium compounds: perspectives on benefits, hazards, and risk’, Toxicology Research and Application, 5, p. 239784732110490. doi: 10.1177/23978473211049085.
Pirela, C. M., Maggiolo, S. and Yévenes, I. (2020) ‘Determination of sodium hypochlorite concentrations in the activation of the irrigant by passive technique with ultrasonic, during the ex vivo endodontic protocol.’, International journal of interdisciplinary dentistry, 13(3), pp. 132–134. doi: 10.4067/s2452-55882020000300132.
Ramdhani, M. N. and Supriyatna, A. (2023) ‘Identifikasi Tata Ruang dan Pengenalan Alat-Alat Di Laboratorium Mikrobiologi’, Jurnal Penelitian Teknologi Informasi dan Sains, 1(2), pp. 41–49.
Rodríguez-Melcón, C. et al. (2022) ‘Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for Twelve Antimicrobials (Biocides and Antibiotics) in Eight Strains of Listeria monocytogenes’, Biology, 11(1). doi: 10.3390/biology11010046.
Selam, M. N. et al. (2022) ‘Evaluation of quality and antimicrobial efficacy of locally manufactured alcohol-based hand sanitizers marketed in Addis Ababa, Ethiopia in the era of COVID-19’, Antimicrobial Resistance and Infection Control. BioMed Central, 11(1), pp. 1–15. doi: 10.1186/s13756-022-01163-2.
Umoren, P. S. et al. (2022) ‘Biogenic Synthesis and Characterization of Chitosan-CuO Nanocomposite and Evaluation of Antibacterial Activity against Gram-Positive and-Negative Bacteria’, Polymers, 14(9). doi: 10.3390/polym14091832.
Utami, S. P., Mulyawati, E. and Soebandi, D. H. (2016) ‘Perbandingan daya antibakteri disinfektan instrumen preparasi saluran akar natrium hipoklorit 5,25%, glutaraldehid 2%, dan disinfektan berbahan dasar glutaraldehid terhadap Bacillus subtilis’, Jurnal Kedokteran Gigi, 7(2), pp. 151–156. Available at: https://journal.ugm.ac.id/jkg/article/view/30128/18197.
Zahid, M. (2014) ‘Pemilihan Bahan Kimia Yang Tepat Untuk Dekontaminasi Di Dalam Laboratorium’, Buletin Pengujian Mutu Obat Hewan, pp. 1–10.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.