Main Article Content

Achmad Zuchriadi
Sargi Ginting
Silvia Angraeni
Didit Widiyanto

Abstract

Energy efficiency is a critical requirement for battery-powered Internet of Things (IoT) systems, particularly those operating under duty-cycled conditions. Among widely adopted microcontroller platforms, ESP32 modules are extensively used due to their integrated connectivity and low-power features. In practice, ESP32 WROOM is commonly deployed because of its affordability and availability, while alternative modules such as ESP32 DFRobot are claimed to offer superior low-power performance. However, quantitative experimental comparisons at the module level remain limited. This study presents a controlled experimental evaluation of power consumption characteristics of ESP32 WROOM and ESP32 DFRobot modules operating in normal mode and deep sleep mode under realistic agricultural IoT workloads. Both modules were integrated with multiple environmental and soil sensors and LoRa communication, using identical hardware configurations, firmware logic, and measurement procedures. Power consumption was measured using a dual digital multimeter setup, with each operating condition evaluated over 50 repeated trials. The results show that both modules exhibit comparable power consumption during normal mode operation. In contrast, significant differences emerge during deep sleep mode. ESP32 WROOM consumes 36.907 mW in deep sleep, while ESP32 DFRobot consumes only 0.317 mW. Quantitative analysis indicates that ESP32 DFRobot achieves a deep sleep power efficiency improvement of approximately 99.14% relative to ESP32 WROOM. These findings demonstrate that module-level hardware design plays a decisive role in ultra-low-power performance and provide empirical guidance for selecting ESP32 modules in duty-cycled IoT deployments with significant implications for battery lifetime.

Downloads

Download data is not yet available.

Article Details

How to Cite
Zuchriadi, A. ., Ginting, S., Angraeni, S. . and Widiyanto, D. . (2026) “Module-level power consumption analysis of ESP32 wroom and ESP32 dfrobot under normal and deep sleep operation”, Jurnal Mantik, 9(4), pp. 1236-1244. doi: 10.35335/mantik.v9i4.6986.
References
Abdelmoneim, A. A., Khadra, R., Derardja, B., & Dragonetti, G. (2023a). Internet of Things (IoT) for Soil Moisture Tensiometer Automation. Micromachines, 14(2). https://doi.org/10.3390/mi14020263
Abdelmoneim, A. A., Khadra, R., Derardja, B., & Dragonetti, G. (2023b). Internet of Things (IoT) for Soil Moisture Tensiometer Automation. Micromachines, 14(2). https://doi.org/10.3390/mi14020263
Adrian, D. R., & Harmadi, H. (2024). Pengaplikasian Alat Ukur Tinggi, Berat Badan, dan Penentuan Status Gizi pada Balita Berbasis ESP32 WROOM 32 melalui Telegram. Jurnal Fisika Unand, 13(1), 82–88. https://doi.org/10.25077/jfu.13.1.82-88.2024
Albreem, M. A., Sheikh, A. M., Alsharif, M. H., Jusoh, M., & Mohd Yasin, M. N. (2021). Green Internet of Things (GIoT): Applications, Practices, Awareness, and Challenges. IEEE Access, 9, 38833–38858. https://doi.org/10.1109/ACCESS.2021.3061697
Alexander, M., Andrew, S., & Yuriy, V. (2017a). Comparative Analysis and Practical Implementation of the ESP32 Microcontroller Module for the Internet of Things. 2017 Internet Technologies and Applications (ITA), 143–148. https://ieeexplore.ieee.org/document/8101926
Alexander, M., Andrew, S., & Yuriy, V. (2017b, November 9). Comparative Analysis and Practical Implementation of the ESP32 Microcontroller Module for the Internet of Things. 2017 Internet Technologies and Applications (ITA).
Carlo, G., Calo, C., Antonello, M., Markus Hans, S., Markus, S., & Dirk, M. (2019). Enabling ESP32-based IoT Applications in Building Automation Systems. 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT), 306–311. https://ieeexplore.ieee.org/document/8792852
Hadi, S. Q., & Ali, M. A. (2025). ENERGY-EFFICIENT SMART MEDICAL BRACELET FOR ALZHEIMER’S PATIENT MONITORING BASED WIRELESS COMMUNICATION SYSTEM. Journal of Mechanics of Continua and Mathematical Sciences, 20(1), 51–58. https://doi.org/10.26782/jmcms.2025.01.00004
Han, J. K., Kang, M., Jeong, J., Cho, I., Yu, J. M., Yoon, K. J., Park, I., & Choi, Y. K. (2022). Artificial Olfactory Neuron for an In-Sensor Neuromorphic Nose. Advanced Science, 9(18). https://doi.org/10.1002/advs.202106017
Indriyani, Y. A., Efendi, R., Rustami, E., Rusmana, I., Anwar, S., Djajakirana, G., & Santosa, D. A. (2024). Affordable ESP32-based monitoring system for microbial fuel cells: real-time analysis and performance evaluation (ESP32-based data logger as a monitoring system for microbial fuel cell). International Journal of Energy and Water Resources, 8(2), 199–212. https://doi.org/10.1007/s42108-023-00255-y
Kadir, A. D. I. A., Alias, M. R. N. M., Dzaki, D. R. M., Din, N. M., Deros, S. N. M., & Haron, M. H. (2021). Cloud-Based IoT Air Quality Monitoring System. Proceeding - 2021 26th IEEE Asia-Pacific Conference on Communications, APCC 2021, 121–127. https://doi.org/10.1109/APCC49754.2021.9609897
Kareem, H., & Dunaev, D. (2021). The Working Principles of ESP32 and Analytical Comparison of using Low-Cost Microcontroller Modules in Embedded Systems Design. 2021 4th International Conference on Circuits, Systems and Simulation, ICCSS 2021, 130–135. https://doi.org/10.1109/ICCSS51193.2021.9464217
Khan, A. I., Alsolami, F., Alqurashi, F., Abushark, Y. B., & Sarker, I. H. (2022). Novel energy management scheme in IoT enabled smart irrigation system using optimized intelligence methods. Engineering Applications of Artificial Intelligence, 114. https://doi.org/10.1016/j.engappai.2022.104996
Kurniasari, A. A., Puspitasari, P. S. D., Perdanasari, L., Yuana, D. B. M., & Jumiatun. (2025). Enhancing Hydroponic Systems with ESP32: An IoT Approach to Real-Time Monitoring and Automation. IOP Conference Series: Earth and Environmental Science, 1446(1). https://doi.org/10.1088/1755-1315/1446/1/012010
Lu, M., Fu, G., Osman, N. B., & Konbr, U. (2021). Green energy harvesting strategies on edge-based urban computing in sustainable internet of things. Sustainable Cities and Society, 75. https://doi.org/10.1016/j.scs.2021.103349
Moloudian, G., Hosseinifard, M., Kumar, S., Simorangkir, R. B. V. B., Buckley, J. L., Song, C., Fantoni, G., & O’Flynn, B. (2024). RF Energy Harvesting Techniques for Battery-Less Wireless Sensing, Industry 4.0, and Internet of Things: A Review. IEEE Sensors Journal, 24(5), 5732–5745. https://doi.org/10.1109/JSEN.2024.3352402
Morchid, A., Muhammad Alblushi, I. G., Khalid, H. M., El Alami, R., Sitaramanan, S. R., & Muyeen, S. M. (2024). High-technology agriculture system to enhance food security: A concept of smart irrigation system using Internet of Things and cloud computing. Journal of the Saudi Society of Agricultural Sciences. https://doi.org/10.1016/j.jssas.2024.02.001
Pereira, G. P., Chaari, M. Z., & Daroge, F. (2023). IoT-Enabled Smart Drip Irrigation System Using ESP32. Internet of Things, 4(3), 221–243. https://doi.org/10.3390/iot4030012
Plauska, I., Liutkevi?ius, A., & Janavi?i?t?, A. (2023). Performance Evaluation of C/C++, MicroPython, Rust and TinyGo Programming Languages on ESP32 Microcontroller. Electronics (Switzerland), 12(1). https://doi.org/10.3390/electronics12010143
Sanislav, T., Mois, G. D., Zeadally, S., & Folea, S. C. (2021). Energy Harvesting Techniques for Internet of Things (IoT). IEEE Access, 9, 39530–39549. https://doi.org/10.1109/ACCESS.2021.3064066
Sherazi, H. H. R., Zorbas, D., & O’flynn, B. (2022). A Comprehensive Survey on RF Energy Harvesting: Applications and Performance Determinants. Sensors, 22(8). https://doi.org/10.3390/s22082990
Suherman, S., Hermansyah, H., & Syahpita, J. (2025). Sistem Alarm Deteksi Gerak Berbasis IoT Menggunakan Sensor PIR dan ESP32 dengan Notifikasi Telegram Real-Time. Jurnal Komputer Teknologi Informasi Sistem Informasi (JUKTISI), 4(2), 1469–1476. https://doi.org/10.62712/juktisi.v4i2.701
Umar Anggono, S. (2025). COMPARATIVE ANALYSIS OF POWER CONSUMPTION AND REAL-TIME PERFORMANCE BETWEEN ESP32 AND RASPBERRY PI PICO W IN IOT-BASED TEMPERATURE MONITORING SYSTEMS. 16(1), 176–182. http://ejurnal.provisi.ac.id/index.php/JTIKP
Widiaratih, R., Suryoputra, A. A. D., Handoyo, G., Satriadi, A., & Putranto, A. B. (2023). Prototype of simple mini-wave gauge using Microcontroller ESP32 on the laboratory scale. IOP Conference Series: Earth and Environmental Science, 1224(1). https://doi.org/10.1088/1755-1315/1224/1/012024
Yüksel, M. E. (2020). Power consumption analysis of a Wi-Fi-based IoT device. Electrica, 20(1), 62–70. https://doi.org/10.5152/ELECTRICA.2020.19081