Main Article Content

Relifra Relifra
Fajri Hamdani
Rakshak Bharti
Dwi Nurhayati

Abstract

This study examines how artificial intelligence (AI) is integrated into managerial routines and business processes of micro, small, and medium-sized enterprises (MSMEs) in the context of digital transformation. Using a qualitative approach, data were collected through semi-structured interviews with ten MSME owners and managers and analyzed using thematic analysis. The findings reveal that AI adoption is driven primarily by pragmatic considerations, particularly tangible business benefits, ease of use, and facilitating conditions, while social influence plays a limited role. More importantly, once AI becomes part of routine practice, its impact extends across marketing, human resources, finance, and operations. The study demonstrates that AI contributes to business transformation by enabling cross-functional integration and more coherent managerial decision-making. These results highlight that the value of AI in MSMEs emerges from its routinized and integrated use rather than from adoption alone

Downloads

Download data is not yet available.

Article Details

How to Cite
Relifra, R., Hamdani, F., Bharti, R. and Nurhayati, D. (2026) “Business transformation of msmes in the digital era: a qualitative study on cross-functional artificial intelligence integration”, Jurnal Mantik, 9(4), pp. 1181-1194. doi: 10.35335/mantik.v9i4.6927.
References
Aagaard, A. (2018). The concept and frameworks of digital business models. In Digital Business Models: Driving Transformation and Innovation. https://doi.org/10.1007/978-3-319-96902-2_1
Abrokwah-Larbi, K. (2023). The role of generative artificial intelligence (GAI) in customer personalisation (CP) development in SMEs: a theoretical framework and research propositions. Industrial Artificial Intelligence, 1(1), 1–11. https://doi.org/10.1007/s44244-023-00012-4
Adarsh, R., Pillai, R. H., Krishnamurthy, A., & Bi, A. (2023). Innovative Business Research in Finance and Marketing System Based on Ethically Governed Artificial Intelligence. 2023 Eighth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), 1–8. https://api.semanticscholar.org/CorpusID:259102024
Agbaakin, O. (2025). Leveraging Artificial Intelligence as a Strategic Growth Catalyst for Small and Medium-sized Enterprises. ArXiv Preprint ArXiv:2509.14532.
Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99–110. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2017.01.002
Alotaibi, N., Wilson, C. B., & Traynor, M. (2025). Enhancing digital readiness and capability in healthcare: a systematic review of interventions, barriers, and facilitators. BMC Health Services Research, 25(1), 500. https://doi.org/10.1186/s12913-025-12663-3
Ayinaddis, S. G. (2025). Artificial intelligence adoption dynamics and knowledge in SMEs and large firms: A systematic review and bibliometric analysis. Journal of Innovation and Knowledge, 10(3), 100682. https://doi.org/10.1016/j.jik.2025.100682
Badghish, S., & Soomro, Y. A. (2024). Artificial Intelligence Adoption by SMEs to Achieve Sustainable Business Performance: Application of Technology–Organization–Environment Framework. Sustainability (Switzerland) , 16(5). https://doi.org/10.3390/su16051864
Bahador, M. H., & Ibrahim, S. S. (2021). Technology Innovations toward Sustainable Growth of Small Medium Enterprise (SMEs): Aftermath COVID-19 Pandemic. International Journal of Academic Research in Business and Social Sciences, 11(2), 1234–1241. https://doi.org/10.6007/ijarbss/v11-i2/9199
Bajunaied, K., Hussin, N., & Kamarudin, S. (2023). Behavioral intention to adopt FinTech services: An extension of unified theory of acceptance and use of technology. Journal of Open Innovation: Technology, Market, and Complexity, 9(1), 100010. https://doi.org/10.1016/j.joitmc.2023.100010
Bharadwaj, A., El Sawy, O. A., Pavlou, P. A., & Venkatraman, N. (2013). Digital business strategy: toward a next generation of insights. MIS Q., 37(2), 471–482. https://doi.org/10.25300/MISQ/2013/37:2.3
Bouwman, H., Nikou, S., Molina-Castillo, F. J., & de Reuver, M. (2018). The impact of digitalization on business models. Digital Policy, Regulation and Governance , 20(2), 105–124. https://doi.org/10.1108/DPRG-07-2017-0039
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa
campagnolo, diego, Gianecchini, M., & Mosca, L. (2023). Configurations of business model themes and strategies in small firms: a qualitative comparative analysis. Journal of Management and Governance, 28, 1–29. https://doi.org/10.1007/s10997-023-09680-x
Cao, S. S., Jiang, W., Lei, L. (Gillian), & Zhou, Q. (Clara). (2024). Applied AI for finance and accounting: Alternative data and opportunities. Pacific Basin Finance Journal, 84. https://doi.org/10.1016/j.pacfin.2024.102307
Cekuls, A. (2023). AI-Driven Competitive Intelligence: Enhancing Business Strategy and Decision Making. Journal of Intelligence Studies in Business. https://api.semanticscholar.org/CorpusID:257468323
Chatterjee, S., Chaudhuri, R., Vrontis, D., & Basile, G. (2022). Digital transformation and entrepreneurship process in SMEs of India: a moderating role of adoption of AI-CRM capability and strategic planning. Journal of Strategy and Management, 15(3), 416–433. https://doi.org/10.1108/JSMA-02-2021-0049
Chintalapati, S., & Pandey, S. K. (2022). Artificial intelligence in marketing: A systematic literature review. International Journal of Market Research, 64(1), 38–68. https://doi.org/10.1177/14707853211018428
Chouki, M., Talea, M., Okar, C., & Chroqui, R. (2019). Barriers to Information Technology Adoption Within Small and Medium Enterprises: A Systematic Literature Review. International Journal of Innovation and Technology Management, 17. https://doi.org/10.1142/S0219877020500078
Clemente-Almendros, J. A., Nicoara-Popescu, D., & Pastor-Sanz, I. (2024). Digital transformation in SMEs: Understanding its determinants and size heterogeneity. Technology in Society, 77, 102483. https://doi.org/https://doi.org/10.1016/j.techsoc.2024.102483
Creswell, J. W., & Creswell, J. D. (2018). Mixed Methods Procedures. In Research Defign: Qualitative, Quantitative, and Mixed M ethods Approaches.
Creswell, J. W., & Poth, C. N. (2017). Qualitative Inquiry and Research Design: Choosing Among Five Approaches. SAGE Publications. https://books.google.co.id/books?id=gX1ZDwAAQBAJ
Dalal, S., Lilhore, U. K., Simaiya, S., Radulescu, M., & Belascu, L. (2024). Improving efficiency and sustainability via supply chain optimization through CNNs and BiLSTM. Technological Forecasting and Social Change, 209(December 2023), 123841. https://doi.org/10.1016/j.techfore.2024.123841
Devezas, T., Leitão, J., & Sarygulov, A. (2017). Industry 4.0: Entrepreneurship and Structural Change in the New Digital Landscape. In Studies on Entrepreneurship, Structural Change and Industrial Dynamics (p. 431).
Dwivedi, Y. K. (2023). “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71. https://doi.org/10.1016/j.ijinfomgt.2023.102642
Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019). Re-examining the Unified Theory of Acceptance and Use of Technology (UTAUT): Towards a Revised Theoretical Model. Information Systems Frontiers, 21(3), 719–734. https://doi.org/10.1007/s10796-017-9774-y
Enholm, I. M., Papagiannidis, E., Mikalef, P., & Krogstie, J. (2022). Artificial Intelligence and Business Value: a Literature Review. Information Systems Frontiers, 24(5), 1709–1734. https://doi.org/10.1007/s10796-021-10186-w
Floridi, L. (2021). What the Near Future of Artificial Intelligence Could Be. Philosophical Studies Series, 144, 379–394. https://doi.org/10.1007/978-3-030-81907-1_22
Giuggioli, G., & Pellegrini, M. M. (2023). Artificial intelligence as an enabler for entrepreneurs: a systematic literature review and an agenda for future research. International Journal of Entrepreneurial Behaviour and Research, 29(4), 816–837. https://doi.org/10.1108/IJEBR-05-2021-0426
Gladysz, B., Matteri, D., Ejsmont, K., Corti, D., Bettoni, A., & Haber Guerra, R. (2023). Platform-based support for AI uptake by SMEs: guidelines to design service bundles. Central European Management Journal, 31(4), 463–478. https://doi.org/10.1108/CEMJ-08-2022-0096
Guest, G., Bunce, A., & Johnson, L. (2006). How Many Interviews Are Enough?: An Experiment with Data Saturation and Variability. Field Methods, 18(1), 59–82. https://doi.org/10.1177/1525822X05279903
Haleem, A., Javaid, M., Asim Qadri, M., Pratap Singh, R., & Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks, 3, 119–132. https://doi.org/https://doi.org/10.1016/j.ijin.2022.08.005
Hamdani, F. (2024). Optimizing Employee Performance in Retail Companies: The Interplay of Adversity Intelligence, Digital Literacy, and Job Satisfaction. International Journal of Business, Law, and Education, 5(2 SE-), 2707–2713. https://doi.org/10.56442/ijble.v5i2.930
Helo, P., & Hao, Y. (2022). Artificial intelligence in operations management and supply chain management: an exploratory case study. Production Planning and Control, 33(16), 1573–1590. https://doi.org/10.1080/09537287.2021.1882690
Hermann, E. (2023). Artificial intelligence in marketing: friend or foe of sustainable consumption? In AI and Society (Vol. 38, Issue 5, pp. 1975–1976). https://doi.org/10.1007/s00146-021-01227-8
Jacob Fernandes França, T., São Mamede, H., Pereira Barroso, J. M., & Pereira Duarte dos Santos, V. M. (2023). Artificial intelligence applied to potential assessment and talent identification in an organisational context. Heliyon, 9(4), e14694. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e14694
Jbeniani, L. (2023). Interpreting Business Strategy and Market Dynamics: A Multi-Interpreting Business Strategy and Market Dynamics: A Multi-Method AI Approach Method AI Approach. https://api.semanticscholar.org/CorpusID:260005696
Kraus, S., Durst, S., Ferreira, J. J., Veiga, P., Kailer, N., & Weinmann, A. (2022). Digital transformation in business and management research: An overview of the current status quo. International Journal of Information Management, 63, 102466. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2021.102466
Kumar, V., Ashraf, A. R., & Nadeem, W. (2024). AI-powered marketing: What, where, and how? International Journal of Information Management, 77, 102783. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2024.102783
Lada, S., Chekima, B., Karim, M. R. A., Fabeil, N. F., Ayub, M. S., Amirul, S. M., Ansar, R., Bouteraa, M., Fook, L. M., & Zaki, H. O. (2023). Determining factors related to artificial intelligence (AI) adoption among Malaysia’s small and medium-sized businesses. Journal of Open Innovation: Technology, Market, and Complexity, 9(4), 100144. https://doi.org/10.1016/j.joitmc.2023.100144
Lee, A. T., Ramasamy, R. K., & Subbarao, A. (2025). Understanding Psychosocial Barriers to Healthcare Technology Adoption. Healthcare (Switzerland), 13(3).
Malik, A., Budhwar, P., Mohan, H., & Srikanth, N. R. (2023). Employee experience –the missing link for engaging employees: Insights from an MNE’s AI-based HR ecosystem. Human Resource Management, 62(1), 97–115. https://doi.org/10.1002/hrm.22133
Mao, H., Zhang, T., & Tang, Q. (2021). Research framework for determining how artificial intelligence enables information technology service management for business model resilience. Sustainability (Switzerland), 13(20). https://doi.org/10.3390/su132011496
Marikyan, D., Papagiannidis, S., & Stewart, G. (2023). Technology acceptance research: Meta-analysis. Journal of Information Science. https://doi.org/10.1177/01655515231191177
Mishrif, A., & Khan, A. (2023). Technology adoption as survival strategy for small and medium enterprises during COVID-19. Journal of Innovation and Entrepreneurship, 12(1). https://doi.org/10.1186/s13731-023-00317-9
Myers, M. D. (2019). Qualitative Research in Business and Management. SAGE Publications. https://books.google.co.id/books?id=hDiqDwAAQBAJ
Nambisan, S., lyytinen, kalle, Majchrzak, A., & Song, M. (2017). Digital Innovation Management: Reinventing Innovation Management Research in a Digital World. MIS Quarterly, 41. https://doi.org/10.25300/MISQ/2017/41:1.03
Nazaruddin, I., Utami, E., & Rahmawati, E. (2024). Digitalization Challenges for SMEs: A Systematic Literature Review Perspective and Future Research. JBTI?: Jurnal Bisnis?: Teori Dan Implementasi, 15, 15–43. https://doi.org/10.18196/jbti.v15i1.20410
Nurhayati, D., Halimahnu, W., Shiddieq, D. F., Juliani, R., Hidayatulloh, S. S., & Rahma, A. F. (2025). Business Performance of Leather MSMEs?: The Role of Intellectual Capital , Innovation Capability , and Entrepreneurial Orientation. Journal of Business and Management Review, 6(9), 1174–1193. https://doi.org/10.47153/jbmr.v6i9.1717
Orlikowski, W. (2000). Using Technology and Constituting Structures: A Practice Lens for Studying Technology in Organizations. Organization Science, 11, 404–428. https://doi.org/10.1287/orsc.11.4.404.14600
Parra-Sánchez, D. T., & Talero-Sarmiento, L. H. (2023). Digital transformation in small and medium enterprises: a scientometric analysis. Digital Transformation and Society, 3(3), 257–276. https://doi.org/10.1108/DTS-06-2023-0048
Peyravi, B., Nekrošien?, J., & Lobanova, L. (2020). Revolutionised technologies for marketing: Theoretical review with focus on artificial intelligence. Business: Theory and Practice. https://www.ceeol.com/search/article-detail?id=951005
Rathore, B. (2023). Digital transformation 4.0: integration of artificial intelligence & metaverse in marketing. In Eduzone: International Peer Reviewed/Refereed …. researchgate.net. https://www.researchgate.net/profile/Bharati-Rathore-2/publication/368789565_Digital_Transformation_40_Integration_of_Artificial_Intelligence_Metaverse_in_Marketing/links/63f9d19d0d98a97717b8350e/Digital-Transformation-40-Integration-of-Artificial-Intelli
Razzouki, M., Hammou, S. Ben, & Izenzal, M. (2025). The adoption and effective use of artificial intelligence in Moroccan higher education: the moderating role of trust. Cogent Education, 12(1), 2553829. https://doi.org/10.1080/2331186X.2025.2553829
Relifra, Ainil Mardiah, Eko Fikriando, Ramadhi, & Oza Syafriani. (2025). TECHNOLOGICAL INNOVATION: ADOPTION OF ARTIFICIAL INTELLIGENCE IN MICRO, SMALL, AND MEDIUM ENTERPRISES (MSMES). JMBI UNSRAT (Jurnal Ilmiah Manajemen Bisnis Dan Inovasi Universitas Sam Ratulangi)., 12(1 SE-Articles), 162–176. https://ejournal.unsrat.ac.id/v3/index.php/jmbi/article/view/59713
Relifra, Mardiah, A., & Fikriando, E. (2025). AI Adoption and Functional Performance in MSMEs?: Evidence Across Marketing , HR , Finance , and Operations. Amkop Management Accounting Review (AMAR), 5(2), 1212–1233. https://doi.org/10.37531/amar.v5i2.3299
Rivas, P., & Zhao, L. (2023). Marketing with ChatGPT: Navigating the Ethical Terrain of GPT-Based Chatbot Technology. AI (Switzerland), 4(2), 375–384. https://doi.org/10.3390/ai4020019
Rodríguez-Espíndola, O., Chowdhury, S., Dey, P. K., Albores, P., & Emrouznejad, A. (2022). Analysis of the adoption of emergent technologies for risk management in the era of digital manufacturing. Technological Forecasting and Social Change, 178, 121562. https://doi.org/https://doi.org/10.1016/j.techfore.2022.121562
Roy, S. K., Tehrani, A. N., Pandit, A., Apostolidis, C., & Ray, S. (2025). Ai-capable relationship marketing: Shaping the future of customer relationships. Journal of Business Research, 192(March), 115309. https://doi.org/10.1016/j.jbusres.2025.115309
Salhab, H. A. (2023). Inventory competition, artificial intelligence, and quality improvement decisions in supply chains with digital marketing. Uncertain Supply Chain Management, 11(4), 1915–1924. https://doi.org/10.5267/j.uscm.2023.8.009
Sánchez, E., Calderón, R., & Herrera, F. (2025). Artificial Intelligence Adoption in SMEs: Survey Based on TOE–DOI Framework, Primary Methodology and Challenges. Applied Sciences (Switzerland), 15(12), 1–43. https://doi.org/10.3390/app15126465
Saunders, M. N. K., Lewis, P., & Thornhill, A. (2023). Research Methods for Business Students. Pearson Education. https://books.google.co.id/books?id=zoy1EAAAQBAJ
Schwaeke, J., Anna, P., Dominik K., K., Sascha, K., & and Jones, P. (2024). The new normal: The status quo of AI adoption in SMEs. Journal of Small Business Management, 1–35. https://doi.org/10.1080/00472778.2024.2379999
Sharma, A. K., & Rai, S. K. (2023). Understanding the Impact of Covid-19 on MSMEs in India: Lessons for Resilient and Sustained Growth of Small Firms. Journal of Small Business Strategy, 33(1), 70–83. https://doi.org/10.53703/001c.72698
Sjödin, D., Parida, V., & Kohtamäki, M. (2023a). Artificial intelligence enabling circular business model innovation in digital servitization: Conceptualizing dynamic capabilities, AI capacities, business models and effects. Technological Forecasting and Social Change, 197, 122903. https://doi.org/https://doi.org/10.1016/j.techfore.2023.122903
Sjödin, D., Parida, V., & Kohtamäki, M. (2023b). Artificial intelligence enabling circular business model innovation in digital servitization: Conceptualizing dynamic capabilities, AI capacities, business models and effects. Technological Forecasting and Social Change, 197(June 2022). https://doi.org/10.1016/j.techfore.2023.122903
Sjödin, D., Parida, V., Palmié, M., & Wincent, J. (2021). How AI capabilities enable business model innovation: Scaling AI through co-evolutionary processes and feedback loops. Journal of Business Research, 134, 574–587. https://doi.org/https://doi.org/10.1016/j.jbusres.2021.05.009
Solaimani, S., & Swaak, L. (2022). Critical Success Factors in a Multi-Stage Adoption of Artificial Intelligence: A Necessary Condition Analysis. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4234144
Song, Y., Qiu, X., & Liu, J. (2025). The Impact of Artificial Intelligence Adoption on Organizational Decision-Making: An Empirical Study Based on the Technology Acceptance Model in Business Management. In Systems (Vol. 13, Issue 8, p. 683). https://doi.org/10.3390/systems13080683
Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial Intelligence in Human Resources Management: Challenges and a Path Forward. California Management Review, 61(4), 15–42. https://doi.org/10.1177/0008125619867910
ul Haq, F., Suki, N. M., Zaigham, H., Masood, A., & Rajput, A. (2025). Exploring AI Adoption and SME Performance in Resource-Constrained Environments: A TOE–RBV Perspective with Mediation and Moderation Effects. Journal of Digital Economy. https://doi.org/https://doi.org/10.1016/j.jdec.2025.07.002
Uren, V., & Edwards, J. S. (2023). Technology readiness and the organizational journey towards AI adoption: An empirical study. International Journal of Information Management, 68(March 2022), 102588. https://doi.org/10.1016/j.ijinfomgt.2022.102588
Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Qi Dong, J., Fabian, N., & Haenlein, M. (2021). Digital transformation: A multidisciplinary reflection and research agenda. Journal of Business Research, 122, 889–901. https://doi.org/https://doi.org/10.1016/j.jbusres.2019.09.022
Vial, G. (2019). Understanding digital transformation: A review and a research agenda. The Journal of Strategic Information Systems, 28(2), 118–144. https://doi.org/https://doi.org/10.1016/j.jsis.2019.01.003
Weber, P., Carl, K. V., & Hinz, O. (2024). Applications of Explainable Artificial Intelligence in Finance—a systematic review of Finance, Information Systems, and Computer Science literature. In Management Review Quarterly (Vol. 74, Issue 2). Springer International Publishing. https://doi.org/10.1007/s11301-023-00320-0
Zahoor, N., Zopiatis, A., Adomako, S., & Lamprinakos, G. (2023). The micro-foundations of digitally transforming SMEs: How digital literacy and technology interact with managerial attributes. Journal of Business Research, 159, 113755. https://doi.org/https://doi.org/10.1016/j.jbusres.2023.113755