Linear Kernel and Polynomial Analysis in Recognizing Tuberculosis Image Using HOG Feature Extraction

##plugins.themes.academic_pro.article.main##

Ira Farenda Sudirman
Winda Hartati Giawa
Intan Permatasari Sarumaha
Sukurman Ndraha
Insidini Fawwaz

Abstract

Tuberculosis (TB) is an airborne disease caused by mycobacterium tuberculosis (MTB) which usually attacks the lungs which can cause severe coughing, fever and chest pain. The recognition of TB negative and positive TB x-ray image patterns in this study uses HOG feature extraction and the SVM method as a classification method by adding linear and polynomial kernel functions to the SVM method. This is because even though it is very good at solving classification problems, SVM can only be used on linear data, so that in order to be used on non-linear data, SVM must be modified using kernel functions. The results showed that the linear kernel was better at classifying the x-ray image of TB with an average accuracy of 79.50% while the polynomial kernel was 77.50%.

##plugins.themes.academic_pro.article.details##

How to Cite
Sudirman, I. F., Giawa, W. H., Sarumaha, I. P., Ndraha, S. and Fawwaz, I. (2020) “Linear Kernel and Polynomial Analysis in Recognizing Tuberculosis Image Using HOG Feature Extraction”, Jurnal Mantik, 4(3), pp. 1693-1698. doi: 10.35335/mantik.Vol4.2020.980.pp1695-1700.

References

  1. Raudlatul Munawarah, Oni Soesanto, and M Reza Faisal, "Penerapan Metode Support Vector Machine Pada Diagnosa Hepatitis," Kumpulan jurnaL Ilmu Komputer (KLIK), vol. 4, no. 1, pp. 103-113, 2016.
  2. Nicole Fogel, "Tuberculosis: A disease without boundaries," Elsevier, pp. 1-5, 2015.
  3. Moh Yamin Darsyah, "Klasifikasi Tuberkulosis Dengan Pendekatan Metode Supports Vector Machine (Svm)," Statistika, vol. 2, no. 2, pp. 37-41, 2014.
  4. Muhammad Athoillah, "Pengenalan Wajah Menggunakan SVM Multi Kernel dengan Pembelajaran yang Bertambah," JOIN (Jurnal Online Informatika), vol. 2, no. 2, pp. 84-91, 2017.
  5. S V Kogilavani, S Malliga, G Jaipriya, Kausalyaa Kausalyaa, and R Makeshkumar, "Tuberculosis Detection Using Svm And Cnn," International Journal of Advanced Science and Technology, vol. 29, no. 3, pp. 1039-1048, 2020.
  6. T Karnkawinpong and Y Limpiyakorn, "Classification of pulmonary tuberculosis lesion with convolutional neural networks," International Conference on Computer and Electrical Engineering, pp. 1-5, 2019.
  7. Putra Apriadi Siregar, Fitriani Pramita Gurning, Eliska Eliska, and Muchti Yuda Pratama, "Analisis Faktor Yang Berhubungan Dengan Kejadian Tuberkuosis Paru Anak Di Rsud Sibuhuan," Jurnal Berkala Epidemiologi, vol. 6, no. 3, pp. 268-275, 2018.
  8. Yuna Sugianela and Nanik Suciati, "Ekstraksi Fitur Pada Pengenalan Karakter Aksara Jawa Berbasis Histogram Of Oriented Gradient," JUTI, vol. 17, no. 1, pp. 64-72, 2019.
  9. Ni Luh Made Asri Mulyasari, Nanik Suciati, and Arya Yudhi Wijaya, "Implementasi Deteksi Copy-move Forgery pada," Implementasi Deteksi Copy-move Forgery pada Citra menggunakan Metode Histogram of Oriented Gradients (HOG), vol. 6, no. 2, pp. 449-453, 2017.
  10. Imelda A Muis and Muhammad Affandes, "Penerapan Metode Support Vector Machine (SVM) Menggunakan Kernel Radial Basis Function (RBF) Pada Klasifikasi Tweet," Jurnal Sains, Teknologi dan Industri, vol. 12, no. 2, pp. 189-197, 2015.
  11. Sihombing, O., Zendrato, N., Laia, Y., Nababan, M., Sitanggang, D., Purba, W., ... & Siregar, S. (2018). Smart home design for electronic devices monitoring based wireless gateway network using cisco packet tracer. JPhCS, 1007(1), 012021.