Main Article Content

Gunawan Gunawan
Akhmad Lutfi Firmansyah
Bayu Aji Santoso

Abstract

Applying the rule-based system method to determine the type of agricultural crop based on altitude and rainfall is essential in increasing productivity and efficiency in modern agriculture. This study aims to develop and implement a rules-based system to recommend suitable plant types by analyzing altitude and rainfall data in the Tegal District. The research method includes experimental design, quantitative analysis, and model validation using data from the Central Bureau of Statistics and various other internet sources, covering January 1 to December 31, 2023. The results showed that this rule-based system effectively provides accurate recommendations with an average accuracy rate of 85% and an error rate of 15%. This system helps farmers make informed decisions about crop selection, reducing crop failure risk and contributing to sustainable agricultural practices. Future research suggests integrating real-time weather prediction technology and additional environmental variables to improve the precision of recommendations and expand the applicability of these systems to other areas with similar characteristics

Downloads

Download data is not yet available.

Article Details

How to Cite
Gunawan, G., Firmansyah, A. L. . and Santoso, B. A. . (2024) “Application of the rule-based system method to determine the type of crops based on altitude and rainfall”, Jurnal Mantik, 8(1), pp. 748-757. doi: 10.35335/mantik.v8i1.5234.
References
Aamir, K. M., Sarfraz, L., Ramzan, M., Bilal, M., Shafi, J., & Attique, M. (2021). A fuzzy rule-based system for classification of diabetes. Sensors, 21(23). https://doi.org/10.3390/s21238095
Benyam, A. A., Soma, T., & Fraser, E. (2021). Digital agricultural technologies for food loss and waste prevention and reduction: Global trends, adoption opportunities and barriers. Journal of Cleaner Production, 323, 129099. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.129099
Bhat, S. A., Hussain, I., & Huang, N.-F. (2023). Soil suitability classification for crop selection in precision agriculture using GBRT-based hybrid DNN surrogate models. Ecological Informatics, 75, 102109. https://doi.org/https://doi.org/10.1016/j.ecoinf.2023.102109
Born, L., Prager, S., Ramirez-Villegas, J., & Imbach, P. (2021). A global meta-analysis of climate services and decision-making in agriculture. Climate Services, 22, 100231. https://doi.org/https://doi.org/10.1016/j.cliser.2021.100231
Bouguettaya, A., & Zarzour, H. (2022). Deep learning techniques to classify agricultural crops through UAV imagery?: a review. Neural Computing and Applications, 34(12), 9511–9536. https://doi.org/10.1007/s00521-022-07104-9
Carletto, C. (2021). Better data, higher impact: improving agricultural data systems for societal change. European Review of Agricultural Economics, 48(4), 719–740. https://doi.org/https://doi.org/10.1093/erae/jbab030
Castiglione, A. M., Mannino, G., Contartese, V., Bertea, C. M., & Ertani, A. (2021). Microbial biostimulants as response to modern agriculture needs: Composition, role and application of these innovative products. Plants, 10(8), 1533. https://doi.org/https://doi.org/10.3390/plants10081533
Cravero, A., Pardo, S., Sepúlveda, S., & Muñoz, L. (2022). Challenges to use machine learning in agricultural big data: a systematic literature review. Agronomy, 12(3), 748. https://doi.org/https://doi.org/10.3390/agronomy12030748
DeLay, N. D., Thompson, N. M., & Mintert, J. R. (2022). Precision agriculture technology adoption and technical efficiency. Journal of Agricultural Economics, 73(1), 195–219. https://doi.org/https://doi.org/10.1111/1477-9552.12440
Erickson, B., & Fausti, S. W. (2021). The role of precision agriculture in food security. Agronomy Journal, 113(6), 4455–4462. https://doi.org/https://doi.org/10.1002/agj2.20919
Gopi, P. S. S., & Karthikeyan, M. (2024). Red fox optimization with ensemble recurrent neural network for crop recommendation and yield prediction model. Multimedia Tools and Applications, 83(5), 13159–13179. https://doi.org/https://doi.org/10.1007/s11042-023-16113-2
Hayes, S. C., Ciarrochi, J., Hofmann, S. G., Chin, F., & Sahdra, B. (2022). Evolving an idionomic approach to processes of change: Towards a unified personalized science of human improvement. Behaviour Research and Therapy, 156, 104155. https://doi.org/https://doi.org/10.1016/j.brat.2022.104155
Khan, N., Ray, R. L., Sargani, G. R., Ihtisham, M., Khayyam, M., & Ismail, S. (2021). Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture. Sustainability, 13(9), 4883. https://doi.org/https://doi.org/10.3390/su13094883
Kumari, V. V., Banerjee, P., Verma, V. C., Sukumaran, S., Alickal, M., Chandran, S., Gopinath, K. A., Venkatesh, G., Yadav, S. K., Singh, V. K., & Awasthi, N. K. (2022). Plant Nutrition?: An Effective Way to Alleviate Abiotic Stress in Agricultural Crops. https://doi.org/10.3390/ijms23158519
Labeyrie, V., Renard, D., Aumeeruddy-Thomas, Y., Benyei, P., Caillon, S., Calvet-Mir, L., Carrière, S. M., Demongeot, M., Descamps, E., & Junqueira, A. B. (2021). The role of crop diversity in climate change adaptation: Insights from local observations to inform decision making in agriculture. Current Opinion in Environmental Sustainability, 51, 15–23. https://doi.org/https://doi.org/10.1016/j.cosust.2021.01.006
Liu, W., Shao, X.-F., Wu, C.-H., & Qiao, P. (2021). A systematic literature review on applications of information and communication technologies and blockchain technologies for precision agriculture development. Journal of Cleaner Production, 298, 126763. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.126763
Maier, G., Albanese, A., Ciavotta, M., Ciulli, N., Giordano, S., Giusti, E., Salvatore, A., & Schembra, G. (2024). WatchEDGE: Smart Networking for Distributed AI-Based Environmental Control. Computer Networks, 110248.
Mashala, M. J., Dube, T., Mudereri, B. T., Ayisi, K. K., & Ramudzuli, M. R. (2023). A systematic review on advancements in remote sensing for assessing and monitoring land use and land cover changes impacts on surface water resources in semi-arid tropical environments. Remote Sensing, 15(16), 3926. https://doi.org/https://doi.org/10.3390/rs15163926
Musanase, C., Vodacek, A., Hanyurwimfura, D., Uwitonze, A., & Kabandana, I. (2023). Data-Driven Analysis and Machine Learning-Based Crop and Fertilizer Recommendation System for Revolutionizing Farming Practices. Agriculture, 13(11), 2141.
Nugroho, H. Y. S. H., Sallata, M. K., Allo, M. K., Wahyuningrum, N., Supangat, A. B., Setiawan, O., Njurumana, G. N., Isnan, W., Auliyani, D., & Ansari, F. (2023). Incorporating Traditional Knowledge into Science-Based Sociotechnical Measures in Upper Watershed Management: Theoretical Framework, Existing Practices and the Way Forward. Sustainability, 15(4), 3502.
Rezk, N. G., Hemdan, E. E.-D., Attia, A.-F., El-Sayed, A., & El-Rashidy, M. A. (2021). An efficient IoT based smart farming system using machine learning algorithms. Multimedia Tools and Applications, 80, 773–797. https://doi.org/https://doi.org/10.1007/s11042-020-09740-6
Senderowicz, L., Bullington, B. W., Sawadogo, N., Tumlinson, K., Langer, A., Soura, A., Zabré, P., & Sié, A. (2023). Measuring contraceptive autonomy at two sites in Burkina Faso: a first attempt to measure a novel family planning indicator. Studies in Family Planning, 54(1), 201–230. https://doi.org/https://doi.org/10.1111/sifp.12224
Sikakwe, G. U. (2023). Mineral exploration employing drones, contemporary geological satellite remote sensing and geographical information system (GIS) procedures: A review. Remote Sensing Applications: Society and Environment, 100988. https://doi.org/https://doi.org/10.1016/j.rsase.2023.100988
Sinha, B. B., & Dhanalakshmi, R. (2022). Recent advancements and challenges of Internet of Things in smart agriculture: A survey. Future Generation Computer Systems, 126, 169–184. https://doi.org/https://doi.org/10.1016/j.future.2021.08.006
Tian, Z., Wang, J., Li, J., & Han, B. (2021). Designing future crops: challenges and strategies for sustainable agriculture. The Plant Journal, 105(5), 1165–1178. https://doi.org/https://doi.org/10.1111/tpj.15107
Ukwuoma, C. C., Cai, D., Heyat, M. B. Bin, Bamisile, O., Adun, H., Al-Huda, Z., & Al-Antari, M. A. (2023). Deep learning framework for rapid and accurate respiratory COVID-19 prediction using chest X-ray images. Journal of King Saud University-Computer and Information Sciences, 35(7), 101596. https://doi.org/https://doi.org/10.1016/j.jksuci.2023.101596
Ullah, K., Ullah, Z., Aslam, S., Salam, M. S., Salahuddin, M. A., Umer, M. F., Humayon, M., & Shaheer, H. (2023). Wind farms and flexible loads contribution in automatic generation control: an extensive review and simulation. Energies, 16(14), 5498. https://doi.org/https://doi.org/10.3390/en16145498
Yang, L. H., Liu, J., Ye, F. F., Wang, Y. M., Nugent, C., Wang, H., & Martínez, L. (2022). Highly explainable cumulative belief rule-based system with effective rule-base modeling and inference scheme. Knowledge-Based Systems, 240, 1–26. https://doi.org/10.1016/j.knosys.2021.107805
Yu, S., Khan, S., Mo, F., Ren, A., Lin, W., Feng, Y., Dong, S., Ren, J., Wang, W., & Noor, H. (2021). Determining optimal nitrogen input rate on the base of fallow season precipitation to achieve higher crop water productivity and yield. Agricultural Water Management, 246, 106689. https://doi.org/https://doi.org/10.1016/j.agwat.2020.106689