Analysis of Factors Affecting Student Graduation Using the K-Means clustering Method

Analysis of Factors Affecting Student Graduation Using the K-Means clustering Method

  • indrawan indrawan Universitas Nasional
  • Agung Triayudi Universitas Nasional
  • Novi Dian Nathasia Universitas Nasional
Keywords: Data Mining, K-means, Factor Analysis, Clustering

Abstract

This research was conducted because the system was not yet available to analyze the graduates of FTKI students. The purpose of this study was to obtain the results of the analysis of factors affecting the graduation of the National University FTKI students. This study uses the K-means method and uses GPA, income, place of birth, organizational activity, SKPI scores as parameters. Data collection techniques in the form of quantitative data collection. The subjects of this study were alumni of the FTKI National University. From the results of research conducted cluster 3 has the highest average IPK value of 3.57, of the total birth place clusters most are in Jabodetabek, all of the clusters show that organizational inactivity is the highest value, overall income clusters have the most value in class one, in cluster 3 the SKPI score has the highest average value of 3451.

Downloads

Download data is not yet available.

References

Jaroji, J., Danuri, D., & Putra, F. P. (2016). K-Means Untuk Menentukan Calon Penerima Beasiswa Bidik Misi Di Polbeng. INOVTEK Polbeng - Seri Informatika, 1(1), 87.

Priyatman, H., Sajid, F., & Haldivany, D. (2019). Klasterisasi Menggunakan Algoritma K-Means Clustering untuk Memprediksi Waktu Kelulusan Mahasiswa. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 5(1), 62.

Widodo and D. Wahyuni, "Implementasi Algoritma K-Means Clustering Untuk Mengetahui Bidang Skripsi Mahasiswa Multimedia Pendidikan Pendidikan Teknik Informatika Dan Komputer Universitas Negeri Jakarta," Jurnal Pinter, vol. 1, 2017.

Islam, H., & Haque, M. (2012). An Approach of Improving Student’s Academic Performance by using K-means clustering algorithm and Decision tree. International Journal of Advanced Computer Science and Applications, 3(8), 146–149.

Asroni, R. A. (2015). Penerapan Metode K-Means Untuk Clustering Mahasiswa Berdasarkan Nilai Akademik Dengan Weka Interface Studi Kasus Pada Jurusan Teknik Informatika UMM Magelang. Ilmiah Semesta Teknika, 18(1), 76–82.

Sembiring, S., Zarlis, M., Hartama, D., Ramliana, S., & Wani, E. (2011). Prediction of Student Academic Performance By an Application of K-Means Data Mining Techniques. Management and Artificial Intelligence, 6(7), 110–114.

Oyelade, O. J., Oladipupo, O. O., & Obagbuwa, I. C. (2010). Application of k Means Clustering algorithm for prediction of Students Academic Performance, 7, 292–295.

Durairaj, M., & Vijitha, C. (2014). Educational Data mining for Prediction of Student Performance Using K-Means Clustering Algorithms. International Journal of Computer Science and Information Technologies, 5(4), 5987–5991.

M, B., Tomy, J., A, U., & Jacob, P. (2011). K- Means Clustering Student Data to Characterize Performance Patterns. International Journal of Advanced Computer Science and Applications, 1(3), 138–140.

Haris, A., & Hendrian, E. (2019). SISTEM MONITORING DAN KLASTER KETERSEDIAAN ENERGI MENGGUNAKAN METODE K-MEANS PADA PEMBANGKIT LISTRIK TENAGA SURYA, 4(2), 266–271

Published
2020-02-01
How to Cite
indrawan, indrawan, Triayudi, A., & Nathasia, N. (2020). Analysis of Factors Affecting Student Graduation Using the K-Means clustering Method. Jurnal Mantik, 3(4, Feb), 135-143. Retrieved from https://iocscience.org/ejournal/index.php/mantik/article/view/522

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.