Application To Classify The Population Census The Total Population By Level Of Education Using K-Means Clustering Algorithm

Application To Classify The Population Census The Total Population By Level Of Education Using K-Means Clustering Algorithm

  • Dewi Janetta Az Zahra Universitas Nasional
  • Agung Triayudi Universitas Nasional
  • Ira Diana Sholihati Universitas Nasional
Keywords: algorithm, census, clustering, k-means, population

Abstract

The current population census is still Carried out by visiting each house. With a process like this, it will take a lot of time so that it will have an impact on the number of costs incurred by the government. For this reason, an online application is needed to Facilitate officers in conducting population censuses. Also, through this population census, the Researchers conducted a grouping of education levels intending to find out the population based on their level of education. The method used is the k-means clustering algorithm. There are three groupings items, namely C1 = population at a high level, C2 = population at a moderate level and C3 = population at a moderate level. The final centroid value used at C1 = (4.8000000,959.20000), C2 = (4.00000,854.000000) and C3 = (9.00000,668.00000). So that the results Obtained grouping C1 = RW2, RW7 and RW8,

Downloads

Download data is not yet available.

References

A. Ibrahim, A. Rifai, and L. Oktarina, “Rancang Bangun Aplikasi Pencatatan Data Kependudukan Kelurahan Pahlawan Berbasis Web,” J. Sist. Inf., vol. 8, no. 1, pp. 947–957, 2016.

T. H. Widodo, O. D. Nurhayati, and I. P. Windasari, “Pembuatan Aplikasi Sensus Penduduk Untuk Desa Wulunggunung,” J. Teknol. dan Sist. Komput., vol. 4, no. 1, p. 9, 2016, doi: 10.14710/jtsiskom.4.1.2016.9-16.

U. Waziri, M. J. Usman, A. Garba, and W. A. Gadzama, “Design and Implementation of Secured Online Census Information Management System Based on B / S Structure,” vol. 3, no. 5, pp. 12345–12354, 2014.

D. P. Fithri Selva Jumeilah, “Klasterisasi Penduduk Lanjut Usia Sumatera Selatan Menggunakan Algoritma K-Modes,” J. TAM ( Technol. Accept. Model ), vol. 8, no. 2, pp. 85–89, 2017.

Eric Fammaldo dan Lukman Hakim, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Tingkat Kesejahteraan Keluarga Untuk Program Kartu Indonesia Pintar,” J. Ilm. Teknol. Inf. Terap., vol. V, no. 1, pp. 24–32, 2018.

F. I. Sri Rahayu, Dodon T. Nugrahadi, “Clustering Penentuan Potensi Kejahatan Daerah Di Kota Banjarbaru Dengan Metode K-Means,” Kumpul. J. Ilmu Komput., vol. 01, no. 01, pp. 33–45, 2014.

G. Abdillah et al., “Penerapan Data Mining Pemakaian Air Pelanggan Untuk Menentukan Klasifikasi Potensi Pemakaian Air Pelanggan Baru Di Pdam Tirta Raharja Menggunakan Algoritma K-Means,” Sentika 2016, vol. 2016, no. Sentika, pp. 18–19, 2016.

D. F. Pramesti, Lahan, M. Tanzil Furqon, and C. Dewi, “Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 9, pp. 723–732, 2017, doi: 10.1109/EUMC.2008.4751704.

L. Maulida, “Kunjungan Wisatawan Ke Objek Wisata Unggulan Di Prov . Dki Jakarta Dengan K-Means,” JISKa, vol. 2, no. 3, pp. 167–174, 2018.

Z. Aras and Sarjono, “Analisis Data Mining Untuk Menentukan Kelompok Prioritas Penerima Bantuan Bedah Rumah Menggunakan Metode Clustering K-Means( Studi Kasus: Kantor Kecamatan Bahar Utara),” J. Manaj. Sist. Inf., vol. 1, no. 2, pp. 159–170, 2016..

Published
2020-02-01
How to Cite
Az Zahra, D., Triayudi, A., & Sholihati, I. (2020). Application To Classify The Population Census The Total Population By Level Of Education Using K-Means Clustering Algorithm. Jurnal Mantik, 3(4, Feb), 55-63. Retrieved from https://iocscience.org/ejournal/index.php/mantik/article/view/508

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.