Main Article Content

Yerik Afrianto Singgalen

Abstract

This study investigates the performance of the Support Vector Machine (SVM) algorithm in sentiment analysis tasks within the context of tourism destination branding, utilizing the Cross-Industry Standard Process for Data Mining (CRISP-DM) framework. Specifically, the research compares SVM performance with and without the Synthetic Minority Over-sampling Technique (SMOTE) across various metrics including accuracy, precision, recall, F-measure, and Area Under the Curve (AUC). The analysis is conducted on a dataset comprising textual data extracted from "Wonderful Indonesia" promotional videos featuring Labuan Bajo. Results indicate that SVM without SMOTE achieves a slightly higher accuracy of 97.79% compared to 96.61% with SMOTE. However, a closer examination reveals that SVM without SMOTE accurately classifies all positive instances, while with SMOTE, one positive instance is misclassified as negative. Precision, recall, and F-measure scores for positive instances are also higher without SMOTE, indicating better performance in classifying positive sentiment

Downloads

Download data is not yet available.

Article Details

How to Cite
Singgalen, Y. A. (2024) “Performance evaluation of SVM with synthetic minority over-sampling technique in sentiment classification”, Jurnal Mantik, 8(1), pp. 326-336. doi: 10.35335/mantik.v8i1.5077.
References
Ardhyanto, A., Dewancker, B., Tsai, Y. L., & Heryana, R. E. (2023). Memory recollection and oral history: a study of vernacular architecture transformation of the past. Journal of Asian Architecture and Building Engineering, 22(6), 3435–3454. https://doi.org/10.1080/13467581.2023.2204951
Bire, R. B., Nugraha, Y. E., & Pellokila, I. R. (2022). Tourist attraction efficiency and its determinants using a two stage, double bootstrap data envelopment analysis: a case study in Indonesia. Journal of Policy Research in Tourism, Leisure and Events, 1–18. https://doi.org/10.1080/19407963.2022.2158191
Caraka, R. E., Wardhana, I. W., Kim, Y., Sakti, A. D., Gio, P. U., Noh, M., & Pardamean, B. (2023). Connectivity, sport events, and tourism development of Mandalika’s special economic zone: A perspective from big data cognitive analytics. Cogent Business and Management, 10(1). https://doi.org/10.1080/23311975.2023.2183565
Christanto, H. J., & Singgalen, Y. A. (2022). Sentiment Analysis on Customer Perception towards Products and Services of Restaurant in Labuan Bajo. Journal of Information Systems and Informatics, 4(3), 511–523. https://doi.org/10.51519/journalisi.v4i3.276
Dewantara, M. H., Gardiner, S., & Jin, X. (2023). Travel vlog ecosystem in tourism digital marketing evolution: a narrative literature review. Current Issues in Tourism, 26(19), 3125–3139. https://doi.org/10.1080/13683500.2022.2136568
Dewi, U. P., & Arifuddin, M. R. (2021). Communicating with the ‘uncultured’: the study of conventional norms in Indonesian intercultural communication context. Journal of International Communication, 27(2), 300–316. https://doi.org/10.1080/13216597.2021.1942950
Dhakal, S. P., & Tjokro, S. P. (2024). Tourism enterprises in Indonesia and the fourth industrial revolution–are they ready? Tourism Recreation Research, 49(2), 439–444. https://doi.org/10.1080/02508281.2021.1996687
Liu, L. W., Wang, C. C., Pahrudin, P., Royanow, A. F., Lu, C., & Rahadi, I. (2023). Does virtual tourism influence tourist visit intention on actual attraction? A study from tourist behavior in Indonesia. Cogent Social Sciences, 9(1). https://doi.org/10.1080/23311886.2023.2240052
Murti, D. C. W., Ratriyana, I. N., & Asmoro, I. D. (2023). “Dream Now, Travel Tomorrow”: Communicating the Nation Branding of Indonesia through Tourism-Based Social Media. Howard Journal of Communications, 34(3), 293–314. https://doi.org/10.1080/10646175.2023.2169086
Nusantara, A. C., Volgger, M., & Pforr, C. (2021). Evaluating the complex impact of policy changes on tourism development: The case of Surakarta, Indonesia. Journal of Global Scholars of Marketing Science: Bridging Asia and the World, 31(4), 614–623. https://doi.org/10.1080/21639159.2021.1935291
Perangin-Angin, R., Tavakoli, R., & Kusumo, C. (2023). Inclusive tourism: the experiences and expectations of Indonesian wheelchair tourists in nature tourism. Tourism Recreation Research, 48(6), 955–968. https://doi.org/10.1080/02508281.2023.2221092
Purwandani, I., & Yusuf, M. (2021). Localizing Indonesian Halal tourism policy within local customs, Qanun, and marketing. Journal of Policy Research in Tourism, Leisure and Events, 0(0), 1–19. https://doi.org/10.1080/19407963.2021.1996382
Salamah, U., & Yananda, M. R. (2020). The Many Faces of Wonderful Indonesia: Tourism Brand in 16 Countries Online News Sites. Jurnal Komunikasi Indonesia, 9(1), 34–39. https://doi.org/10.7454/jki.v9i1.11586
Sejati, A. W., Putri, S. N. A. K., Tyas, W. P., Buchori, I., Handayani, W., Basuki, Y., Barbarossa, G., & Husna, I. N. (2023). Predicting urban carrying capacity to support sustainable tourism using GIS. Journal of Policy Research in Tourism, Leisure and Events, 1–24. https://doi.org/10.1080/19407963.2023.2279065
Sholeh, M., & Juniarti, G. (2021). Gaya Hidup Hedonisme dalam Iklan Pariwisata Wonderful indonesia “An Exploration of the Wondrous Labuan Bajo.” JIKE?: Jurnal Ilmu Komunikasi Efek, 5(1), 131–149.
Singgalen, Y. A. (2022). Analisis Sentimen Wisatawan Melalui Data Ulasan Candi Borobudur di Tripadvisor Menggunakan Algoritma Naïve Bayes Classifier. Building of Informatics, Technology and Science (BITS), 4(3), 1343?1352. https://doi.org/10.47065/bits.v4i3.2486
Singgalen, Y. A. (2023a). Analisis Perilaku Wisatawan Berdasarkan Data Ulasan di Website Tripadvisor Menggunakan CRISP-DM?: Wisata Minat Khusus Pendakian Gunung Rinjani dan Gunung Bromo. Journal of Computer System and Informatics (JoSYC), 4(2), 326–338. https://doi.org/10.47065/josyc.v4i2.3042
Singgalen, Y. A. (2023b). Analisis Sentimen dan Sistem Pendukung Keputusan Menginap di Hotel Menggunakan Metode CRISP-DM dan SAW. Journal of Information System Research (JOSH), 4(4), 1343–1353. https://doi.org/10.47065/josh.v4i4.3917
Singgalen, Y. A. (2023c). Analisis Sentimen Pengunjung Pulau Komodo dan Pulau Rinca di Website Tripadvisor Berbasis CRISP-DM. Journal of Information System Research (JOSH), 4(2), 614–625. https://doi.org/10.47065/josh.v4i2.2999
Singgalen, Y. A. (2023d). Analisis Sentimen Top 10 Traveler Ranked Hotel di Kota Makassar Menggunakan Algoritma Decision Tree dan Support Vector Machine. KLIK: Kajian Ilmiah Informatika Dan Komputer, 4(1), 323–332. https://doi.org/10.30865/klik.v4i1.1153
Singgalen, Y. A. (2023e). Comparative analysis of decision tree and support vector machine algorithm in sentiment classification for birds of paradise content. International Journal of Basic and Applied Science, 12(3), 100–109.
Singgalen, Y. A. (2023f). Sentiment classification of coral reef 101 content using decision tree algorithm through CRISP-DM. International Journal of Basic and Applied Science, 12(3), 121–130.
Singgalen, Y. A. (2024). Social network and sentiment analysis of product reviews ( case of smartwatch product content ). International Journal on Social Science, Economics and Art, 13(4), 255–267.
Sujatna, E. T. S., Mulyanah, A., Walangarei, S. F., Sukma, B. P., & Rahmawati, A. (2024). Objective or subjective adjectives? A case study on UNESCO Global Geopark tourism texts. Cogent Arts and Humanities, 11(1). https://doi.org/10.1080/23311983.2023.2295076
Wang, S., & Sun, J. (2023). Embodiment of feminine subjectivity by women of a tourism destination. Journal of Sustainable Tourism, 31(6), 1447–1463. https://doi.org/10.1080/09669582.2022.2053858
Westoby, R., Gardiner, S., Carter, R. W., & Scott, N. (2021). Sustainable livelihoods from tourism in the “10 New Balis” in Indonesia. Asia Pacific Journal of Tourism Research, 26(6), 702–716. https://doi.org/10.1080/10941665.2021.1908386