Main Article Content

Yerik Afrianto Singgalen

Abstract

This research investigates the efficacy of sentiment classification models, specifically k-NN and DT algorithms, in the context of destination branding, with a focus on Labuan Bajo tourism. Utilizing the CRISP-DM (Cross-Industry Standard Process for Data Mining) framework, the study systematically navigates through all six stages, including business understanding, data understanding, data preparation, modeling, evaluation, and deployment, to analyze textual reviews and gauge public sentiments towards Labuan Bajo. The findings reveal that both k-NN and DT models exhibit high accuracy and precision, with k-NN achieving an average accuracy of 97.79% and DT 97.52%. While k-NN demonstrates commendable performance in recall, DT exhibits superior discriminative power, particularly when integrated with SMOTE, as evidenced by higher AUC values. The research underscores the importance of leveraging advanced machine learning techniques for sentiment analysis to inform destination branding strategies effectively. These insights provide valuable guidance for stakeholders in enhancing the branding and promotion of Labuan Bajo as a premier tourist destination, ultimately contributing to its sustainable development and global recognition

Downloads

Download data is not yet available.

Article Details

How to Cite
Singgalen, Y. A. (2024) “Comparative analysis of k-NN and DT model in sentiment classification of Labuan bajo-wonderful Indonesia content reviews”, Jurnal Mantik, 8(1), pp. 314-325. doi: 10.35335/mantik.v8i1.5076.
References
Ardhyanto, A., Dewancker, B., Tsai, Y. L., & Heryana, R. E. (2023). Memory recollection and oral history: a study of vernacular architecture transformation of the past. Journal of Asian Architecture and Building Engineering, 22(6), 3435–3454. https://doi.org/10.1080/13467581.2023.2204951
Camargo, B. A., & Vázquez-Maguirre, M. (2021). Humanism, dignity and indigenous justice: the mayan train megaproject, Mexico. Journal of Sustainable Tourism, 29(2–3), 371–390. https://doi.org/10.1080/09669582.2020.1758707
Caraka, R. E., Wardhana, I. W., Kim, Y., Sakti, A. D., Gio, P. U., Noh, M., & Pardamean, B. (2023). Connectivity, sport events, and tourism development of Mandalika’s special economic zone: A perspective from big data cognitive analytics. Cogent Business and Management, 10(1). https://doi.org/10.1080/23311975.2023.2183565
Christanto, H. J., & Singgalen, Y. A. (2022). Sentiment Analysis on Customer Perception towards Products and Services of Restaurant in Labuan Bajo. Journal of Information Systems and Informatics, 4(3), 511–523. https://doi.org/10.51519/journalisi.v4i3.276
Dewi, U. P., & Arifuddin, M. R. (2021). Communicating with the ‘uncultured’: the study of conventional norms in Indonesian intercultural communication context. Journal of International Communication, 27(2), 300–316. https://doi.org/10.1080/13216597.2021.1942950
Dhakal, S. P., & Tjokro, S. P. (2024). Tourism enterprises in Indonesia and the fourth industrial revolution–are they ready? Tourism Recreation Research, 49(2), 439–444. https://doi.org/10.1080/02508281.2021.1996687
Dudley, K. D., Duffy, L. N., Terry, W. C., & Norman, W. C. (2022). The historical structuring of the U.S. tourism workforce: a critical review. Journal of Sustainable Tourism, 30(12), 2823–2838. https://doi.org/10.1080/09669582.2021.1952417
Hamdan, I. Z. P., & Othman, M. (2022). Predicting Customer Loyalty Using Machine Learning for Hotel Industry. Journal of Soft Computing and Data Mining, 3(2), 31–42.
Hossain, M. S., Begum, H., Rouf, M. A., & Sabuj, M. M. I. (2023). Investigation and prediction of users’ sentiment toward food delivery apps applying machine learning approaches. Journal of Contemporary Marketing Science, 6(2), 109–127. https://doi.org/10.1108/JCMARS-12-2022-0030
King, C., Iba, W., & Clifton, J. (2021). Reimagining resilience: COVID-19 and marine tourism in Indonesia. Current Issues in Tourism, 24(19), 2784–2800. https://doi.org/10.1080/13683500.2021.1873920
Liu, Y., Yu, J., & Wang, F. (2022). Inbound tourism flows and foreign exchange revenue in the ASEAN from China and the world. Current Issues in Tourism, 25(4), 524–540. https://doi.org/10.1080/13683500.2021.1889480
Murti, D. C. W., Ratriyana, I. N., & Asmoro, I. D. (2023). “Dream Now, Travel Tomorrow”: Communicating the Nation Branding of Indonesia through Tourism-Based Social Media. Howard Journal of Communications, 34(3), 293–314. https://doi.org/10.1080/10646175.2023.2169086
Noori, B. (2021). Classification of Customer Reviews Using Machine Learning Algorithms. Applied Artificial Intelligence, 35(8), 567–588. https://doi.org/10.1080/08839514.2021.1922843
Pattiasina, T., & Rosiyadi, D. (2020). Comparison of Data Mining Classification Algorithm for Predicting the Performance of High School Students. Jurnal Techno Nusa Mandiri, 17(1), 22–30. https://doi.org/10.33480/techno.v17i1.1226
Perangin-Angin, R., Tavakoli, R., & Kusumo, C. (2023). Inclusive tourism: the experiences and expectations of Indonesian wheelchair tourists in nature tourism. Tourism Recreation Research, 48(6), 955–968. https://doi.org/10.1080/02508281.2023.2221092
Purwandani, I., & Yusuf, M. (2021). Localizing Indonesian Halal tourism policy within local customs, Qanun, and marketing. Journal of Policy Research in Tourism, Leisure and Events, 0(0), 1–19. https://doi.org/10.1080/19407963.2021.1996382
Rousyati, Gata, W., Pratmanto, D., & Warchani, N. K. (2022). Analisis Sentimen Financial Technology Peer to Peer Lending Pada Aplikasi Koinworks. Jurnal Teknologi Infor, 9(6), 1167–1176. https://doi.org/10.25126/jtiik.202294409
Sejati, A. W., Putri, S. N. A. K., Tyas, W. P., Buchori, I., Handayani, W., Basuki, Y., Barbarossa, G., & Husna, I. N. (2023). Predicting urban carrying capacity to support sustainable tourism using GIS. Journal of Policy Research in Tourism, Leisure and Events, 1–24. https://doi.org/10.1080/19407963.2023.2279065
Singgalen, Y. A. (2023a). Analisis Sentimen Pengunjung Pulau Komodo dan Pulau Rinca di Website Tripadvisor Berbasis CRISP-DM. Journal of Information System Research (JOSH), 4(2), 614–625. https://doi.org/10.47065/josh.v4i2.2999
Singgalen, Y. A. (2023b). Penerapan CRISP-DM dalam Klasifikasi Sentimen dan Analisis Perilaku Pembelian Layanan Akomodasi Hotel Berbasis Algoritma Decision Tree ( DT ). Jurnal Sistem Komputer Dan Informatika (JSON), 5(2), 237–248. https://doi.org/10.30865/json.v5i2.7081
Sujatna, E. T. S., Mulyanah, A., Walangarei, S. F., Sukma, B. P., & Rahmawati, A. (2024). Objective or subjective adjectives? A case study on UNESCO Global Geopark tourism texts. Cogent Arts and Humanities, 11(1). https://doi.org/10.1080/23311983.2023.2295076
Sulistyaningsih, T., Jainuri, J., Salahudin, S., Jovita, H. D., & Nurmandi, A. (2022). Can Combined Marketing and Planning-oriented of Community-based Social Marketing (CBSM) Project Successfully Transform the Slum Area to Tourism Village? A Case Study of the Jodipan Colorful Urban Village, Malang, Indonesia. Journal of Nonprofit and Public Sector Marketing, 34(4), 421–450. https://doi.org/10.1080/10495142.2021.1874590
Wang, S., & Sun, J. (2023). Embodiment of feminine subjectivity by women of a tourism destination. Journal of Sustainable Tourism, 31(6), 1447–1463. https://doi.org/10.1080/09669582.2022.2053858
Westoby, R., Gardiner, S., Carter, R. W., & Scott, N. (2021). Sustainable livelihoods from tourism in the “10 New Balis” in Indonesia. Asia Pacific Journal of Tourism Research, 26(6), 702–716. https://doi.org/10.1080/10941665.2021.1908386