Main Article Content

Muhammad Ibnu Hawari
Bosker Sinaga

Abstract

Latex is the production produced from rubber trees by means of tapping using a special knife, and in the plantations there are some plants produce processed in the plant itself becomes a basic ingredient or finished goods to consumers. During this time determine the outcome prediction latex production does not use a method so the results are not in accordance with what diharafkan. This is due to the lack of an objective method to decide the outcome prediction latex production, the rapid selection based on the data of workers tapping some rubber trees with some techniques and ways to get good results. With reference to the solutions provided Naïve Bayes algorithm to help predict the outcome of latex production, A leader collects sap yield of 3 items are Latex, Lump and Treelace. Calculations are done with the third item Naïve Bayes algorithm method with classifications that apply data mining and data probability. Data Mining is generally defined as a system capable of generating and handling of problem solving. Naïve Bayes algorithm can determine the value of the preferences of each alternative, and may be the best alternative from a number of alternatives.

Downloads

Download data is not yet available.

Article Details

How to Cite
Hawari, M. I. and Sinaga, B. (2019) “Naïve Bayes Algorithm Implementation To Predict Gum Production at PT. Sri Rahayu Court: Naïve Bayes Algorithm Implementation To Predict Gum Production at PT. Sri Rahayu Court”, Jurnal Mantik, 3(3), pp. 40-45. Available at: https://iocscience.org/ejournal/index.php/mantik/article/view/315 (Accessed: 22February2026).
References
[1] Alfina, T., Santosa, B., & Barakbah, A. R. (2012). Analisa Perbandingan Metode Hierarchical Clustering, K-Means dan Gabungan Keduanya dalam Cluster Data (Studi Kasus : Problem Kerja Praktek Jurusan Teknik Industri ITS). Jurnal Teknik ITS , 1, A521- A525.
[2] Arista, R. (2009). Analisis Sistem Penggajian Pada PMI Cabang Surakarta. Surakarta: Universitas Sebelas Maret.
[3] Fadlina. (2014). Data Mining Untuk Analisa Tingkat Kejahatan Jalanan Dengan Algoritma Association Rule Metode Apriori. Informasi dan Teknologi (INTI) , 3 (1), 144-154.
[4] Fais, S. N., D, A. M., & I, S. M. (2014). KLasifikasi Calon Pendonor Darah Dengan Metode Naive Bayes Classifier. Malang: Universitas Brawijaya Malang.
[5] Gumilang, I. C., Sudjalwo, & Rakhmadi, A. (2014). Prediksi Persediaan Obat Dengan Metode Naive Bayes (Studi Kasus: Apotek Saputra). Surakarta: Universitas Muhammadiyah Surakarta.
[6] Hermawati, F. A. (2013). Data Mining. Yogyakarta: Penerbit Andi.
[7] Junanto, A. (2013). Algoritma Naive Bayes untuk Mencari Perkiraan Waktu Studi Mahasiswa. Jurnal Informatika DINAMIK , 18 (1), 9-16.
[8] Meilani, B. D., & Susanti, N. (2014). Aplikasi Data Mining Untuk Menghasilkan Pola Kelulusan Siswa Dengan Metode Naive Bayes. Jurnal LINK , 21 (2), 1-6.
[9] Nugroho, A., & Subanar. (2013). Klasifikasi Naive Bayes untuk Prediksi Kelahiran pada Data Ibu Hamil. Berkala MIPA , 23 (3), 297-308.
[10] Nurani, A., Susanto, B., & Proboyekti, U. (2007). Implementasi Naive Bayes Classifier Pada Program Bantu Penentuan Buku Referensi Mata Kuliah. Jurnal Informatika , 3 (2), 32-36.
[11] Panjaitan, M. R., Maas, L. T., & Tukiman. (2012). Faktor - Faktor Yang Mempengaruhi Anggota Organisasi Kepemudaan Alumni BUdi Mulia (ALBUM-MEDAN) Terhadap Donor Darah di PMI Medan Tahun 2012. Medan: Universitas Sumatera.
Pakpahan, A. et al. (2019) ‘Implementation of Certainty Factor Method for Diagnoses of Photocopy Machine Damage Implementation of Certainty Factor Method for Diagnoses of Photocopy Machine Damage’, Journal of Physics: Conference Series, 1255(012059). doi: 10.1088/1742-6596/1255/1/012059.
Sembiring, A. S. et al. (2019) ‘Implementation of Certainty Factor Method for Expert System’, Journal of Physics: Conference Series PAPER, 1255(012065). doi: 10.1088/1742-6596/1255/1/012065.
Sihotang, H. T. et al. (2019) ‘Expert System for Diagnosis Chicken Disease using Bayes Theorem’, Journal of Physics: Conference Series PAPER, 1230(012066). doi: 10.1088/1742-6596/1230/1/012066.