Analysis of Acceptance And Use of Learning Management System Using The UTAUT Model (Case study: STMIK Logika)

Mayu Rina Dwita

Manajemen Informatika
Sekolah Tinggi Manajemen Informatika dan Komputer Logika

Email: mayurina.dwita78@gmail.com

ARTICLE INFO

Web technology is the result of a set or organized activities and procedures which are the development of renewable information system technology where the development of the application uses the Android system model. The development of the website system and its application creates an ease in providing information, especially in the material or teaching material at which the Covid-19 outbreak is currently happening. This learning system indirectly provides information to the public and students, especially in the form of knowledge and information related to knowledge in a particular field of science. STMIK Logika applies the learning system as a medium for online learning in addition to face to face directly. Learning system developed with the aim of improving the quality and effectiveness of learning that offers several facilities such as online assignments, online tests, lecture materials and so on. To find out the behavior in the use of e-learning, the UTAUT (Unified Theory of Acceptance and Use of Technology) model is used. The results of the study are in the form of Performance Expansion (PE), Business Expansion (EE), Social Influence (SI) and Facilitating (FC) variables that have a significant effect on User Acceptance Interest (BI). Overall, all of these predictor variables are able to explain the effect on user acceptance interest. The UTAUT (Unified Theory Of Acceptance And Use Of Technology) model is used. The results of the study are in the form of Performance Expansion (PE), Business Expansion (EE), Social Influence (SI) and Facilitating (FC) variables that have a significant effect on User Acceptance Interest (BI). Overall, all of these predictor variables are able to explain the effect on user acceptance interest. The UTAUT (Unified Theory Of Acceptance And Use Of Technology) model is used. The results of the study are in the form of Performance Expansion (PE), Business Expansion (EE), Social Influence (SI) and Facilitating (FC) variables that have a significant effect on User Acceptance Interest (BI). Overall, all of these predictor variables are able to explain the effect on user acceptance interest.

Keywords:
UTAUT, Learning System, Predictor Variables, Academic Community

1. Introduction

The development of technology at this time cannot be separated by the existence of web-based technology as information media in an organization, company or individual. This technology began to be realized in the era of globalization where organizations, companies are required to be more competitive and have competitiveness in the process or in the products produced.

The application of learning management system technology in STMIK Logika is carried out to support the teaching and learning process and create a good academic atmosphere where information is provided in real time and is integrated accurately, timely and can improve the quality of system users in this case are students. The successful use of technology will not run effectively and as expected if the user is unable or does not understand the use of e-learning. The success of the use also depends on the user's acceptance and use, especially when there is a Covid-19 outbreak that requires online learning.

UTAUT has been applied in the academic environment by many researchers. Dasgupta, et al. (2007), applying UTAUT to understand student perceptions of the acceptance and use of case tools. The result is...
effort expectancy has no effect on behavioral intention. While facilitating conditions have a significant effect on behavioral intention. Marchewka, et al (2007) also reported a slight difference with the UTAUT theory when they tested UTAUT in the academic environment. Although the results of studies with UTAUT in the academic environment are slightly different from the original model (in non-academic environments), UTAUT still contributes to a better understanding of the acceptance and use of ICT in the academic environment.

Rohmadi, Bambang and Henderi (2018), produced that Performance Expectancy had a significant and positive influence on Behavioral Intention that was moderated by female sex. The condition for Behavior Intention is stronger for respondents with an age level <30 years than \(\geq 30 \) years.

2. Literature Review

a. Population and Sample
Research The number of sample members is often expressed by sample size. The number of samples expected to represent 100% of the population is the same as the number of members of the population itself. So if the population of 1000 and the results of the study will be applied to 1000 people without any errors, then the number of samples taken is equal to the population of 1000 people. The greater the number of samples approaching the population, the smaller the chance of generalization errors and vice versa the smaller the number of samples away from the population, the greater the generalization error

b. Measurement Scale and Research Instruments
With a Likert scale, the variables to be measured are translated into indicator variables. Then the indicator is used as a starting point for compiling instrument items which can be statements or questions. c. Research Instruments Instruments are measurements of social and natural phenomena. The number of research instruments depends on the number of research variables that have been determined to be studied

c. Instrument Trial
By using a valid and reliable instrument in data collection, it is expected that the research results will be valid and reliable. So a valid and reliable instrument is an absolute requirement to get valid and reliable research results

2.1. Conceptual framework
The UTAUT model is based on previous technology acceptance models such as Theory of Reasoned Action (TRA), technology acceptance model (TAM), motivational model (MM), theory of planned behavior (TPB), combined TAM and TPB, model of PC utilization (MPTU), innovation diffusion theory (IDT) and social cognitive theory (SCT). UTAUT proved to be more successful than the eight other theories in explaining up to 70 percent of user variants. After evaluating the eight models, Venkatesh et al. found seven constructs that appeared to be a significant direct determinant of behavior intention or use behavior in one or more of each model. These constructs are performance expectancy, effort expectancy, social influence, facilitating conditions, attitude toward using technology, and self-efficacy. After further testing, they found four main constructs that played an important role as direct determinants of behavioral intention and use behavior, namely, performance expectancy, effort expectancy, social influence, and facilitating conditions. While others are not significant as a direct determinant of behavioral intention. Besides that there are also three moderators: gender, age, and the experience of using a computer that is positioned to moderate the impact of four main constructs on behavioral intention and use behavior. Figure 1 shows the relationship between these determinants and moderators.
2.2. Hypothesis
Hypothesis of the relationship between independent and dependent constructs, namely:
1. Performance Expectancy / Performance expectations have a positive effect on interest in using learning management systems (behavioral intention to use)
2. Effort Expectancy / Business expectations have a positive effect on the interest in the use and use of learning management systems (behavioral intention to use)
3. Social Influence / Social factors have a positive effect on the interest in the use and use of learning management systems (behavioral intention)
4. Facilitating Conditions / Facilitation conditions have a positive effect on the behavior of the use and use of learning management systems (behavioral intention).

3. Research Methods
This research category is quantitative where the data obtained in the form of numbers, presented in the form of tables or graphs. The questionnaire is an instrument used where questions or statements are arranged based on the variables used in the UTAUT model. The measurement scale used is a Likert scale with a specified criteria score of 1 to 5 from Strongly Agree to Strongly Disagree.

3.1. Operational Definition and Variable Measurement
In completing this research, there are several operational definitions and measurement variables used as follows:

a. Independent Variable (X)
 a) Performance Expectancy
 b) Business Expectancy (Effort Expectancy)
 c) Social Influence
 d) Facilitating Conditions
b. Dependent Variable (Y)
 The dependent variable studied by researchers in the form of user behavior (Use Behavior) with a construct consisting of attitudes toward behavior, intrinsic motivation, feelings towards system use and preferences
 c. Moderation Variables
 There are three moderation variables used, namely gender, age and experience of computer use.
 d. Intervening Variables
 The intervening variable used in this study is the interest in user acceptance (Behavior Intention) that is associated with user behavior (Use Behavior).

3.2. Research sites
The study was conducted at STMIK Logika Medan with data taken were data on active students in 2018 totaling 50 people (samples).

3.3. Method of collecting data
There are two data collection methods in this study, namely primary and secondary data, namely:

a) Primary data
Primary data is data taken directly without intermediaries with sources by means of interviews and questionnaires.

b) Secondary Data
Secondary data is data obtained indirectly from existing sources in the form of official records or archives, literature articles, journals and internet sites related to the research conducted.

3.4. **Analysis Techniques**

a. Data Quality Test
 a) Validity test
 b) Reliability Test

b. Classic assumption test
 a) Normality test
 b) Multicollinearity Test
 c) Heteroscedasticity Test
 d) Autocorrelation Test

c. Multiple Linear Regression Analysis

d. Hypothesis testing
 a) Partial Test Statistics (t)
 b) Simultaneous Statistical Test (F)

e. Coefficient of Determination (R2)

4. **Research Results And Discussion**

4.1. **Classic Assumption Test Results**

The objects in this study were 2018 active students totaling 50 people for the Informatics Management Study Program. This chapter will discuss the results of the study, especially those relating to data obtained during the study. This study aims to find whether there are differences in the independent variables on the dependent variable. The method used in this study is a statistical analysis method using the classical assumptions consisting of Normality, Multicollinearity, Autocorrelation and Heteroscedasticity Tests. In addition to the classic test method used is Linear Regression Analysis, T Test and F Test. Data analysis begins by distributing questionnaires, then data collection of questionnaire results is entered into SPSS 16 software. After data from the independent variables is completed, then data from the dependent variable. Then these variables are entered into the SPSS (Statistical Product of Service Solution) application that is used to get the results of statistical calculations in accordance with predetermined data analysis methods to obtain conclusions from the results of the study.

4.2. **Descriptive Analysis of Respondent Characteristics**

Before conducting a statistical test analysis, it will first be discussed regarding the data description of the research variables about the identity of respondents. The characteristics of 70 respondents from the processed questionnaire are as shown in the following table:

<table>
<thead>
<tr>
<th>Characteristics of Respondents by Gender</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid Men</td>
<td>44</td>
<td>88.0</td>
<td>88.0</td>
<td>88.0</td>
</tr>
<tr>
<td>Woman</td>
<td>6</td>
<td>12.0</td>
<td>12.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Source: Primary data, processed by SPSS, 2016

The above table shows that the respondents in this study were dominated by male sex as much as 88.0%, while female sex was only 12.0%.
Table 2.
Characteristics of Respondents Based on the Experience of Computer Use

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>4</td>
<td>5</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>3</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>2</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Source: Primary data, processed by SPSS, 2016

The above table shows that respondents whose tenure of 1-10 years had a percentage of 74.0%, for respondents whose tenure of 11-20 years had a percentage of 26.0%.

4.3. Data Validity Test Results

Validity test is used to measure the validity of a questionnaire. In this study the validity test is done by looking at the correlation between the score of each question item with the total score (item total correlation) variable. Calculations are performed using the Pearson's Product Moment product correlation formula in the SPSS program. The rtable value is calculated using the analysis of df (degree of freedom), namely the formula \(df = nk \) where \(n \) is the number of respondents and \(k \) is the number of variables used. Based on \(r \) product moment obtained rtable value of 0.34. The results of validity testing for each variable are displayed in the following tables:

Table 3.
Validity Test Results for Independent Variables

<table>
<thead>
<tr>
<th>Item Questions</th>
<th>count</th>
<th>rtable</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.592</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>2</td>
<td>0.569</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>3</td>
<td>.771</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>4</td>
<td>0.543</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>5</td>
<td>.608</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>6</td>
<td>.683</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>7</td>
<td>.686</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>8</td>
<td>0.546</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>9</td>
<td>.703</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>10</td>
<td>.705</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>11</td>
<td>.672</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>12</td>
<td>0.791</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>13</td>
<td>0.480</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>14</td>
<td>0.583</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>15</td>
<td>.751</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>16</td>
<td>.627</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>17</td>
<td>0.482</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>18</td>
<td>0.558</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>19</td>
<td>0.572</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>20</td>
<td>0.591</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>21</td>
<td>.484</td>
<td>.388</td>
<td>Valid</td>
</tr>
</tbody>
</table>
The table above shows the Pearson correlation value (r count) for each question item greater than the r value table. The level of significance for items is at the 0.05 level. This means that all indicator/question items measuring independent variables are valid.

Table 4.

Test Results of Dependent Variable Validity

<table>
<thead>
<tr>
<th>Item Questions</th>
<th>count</th>
<th>rtable</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>0.440</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>23</td>
<td>.657</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>24</td>
<td>0.762</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>25</td>
<td>0.719</td>
<td>.388</td>
<td>Valid</td>
</tr>
<tr>
<td>26</td>
<td>0.787</td>
<td>.388</td>
<td>Valid</td>
</tr>
</tbody>
</table>

Source: Primary data, processed, 2016

The table above shows the Pearson correlation value (r count) for each question item greater than the r value table. The level of significance for items is at the 0.05 level. This means that all indicator/question items measuring performance variables are valid.

4.4. Data Reliability Test Results

Data reliability testing was performed using Cronbach’s Alpha statistical tests. The results of the questionnaire reliability test are shown in the following table:

Table 5

Reliability Statistics

<table>
<thead>
<tr>
<th>Cronbach's Alpha</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.944</td>
<td>30</td>
</tr>
</tbody>
</table>

Source: Primary data, processed, 2016

The table above shows that Cronbach's alpha value is 0.955. This number is > 0.60. This means that the construct of the questions arranged to measure is reliable.

4.5. Data Testing Results

From the research data obtained in the form of primary data on the influence of the leadership of the Head of the Program Division on employee work performance, then the research variables will be described by testing the Classical Assumption Test, Multiple Linear Analysis, Hypothesis Test, and the Coefficient of Determination Test (R2).

a. Classic assumption test

Testing classic assumptions in this study consisted of normality, multicollinearity, heteroscedasticity and autocorrelation.

1) Normality test

Normality test data which is intended to show data generated from regression has been normally distributed or not. The method that is often used to determine whether a model is normally distributed or not can be used with the Kolmogorov Smirnov one sample test, the histogram approach and the PP plot approach. Tests for the User Acceptance Interest variable are performed.
Judging from the PP image of the normality test plot, this study is feasible because it meets the normality assumption. In the Scatter Plot, the dots follow the data along the diagonal line and no dots move apart. This means that the data is normally distributed. Thus it can be ascertained that the data is good enough to be used in research for the User Acceptance Interest variable. Whereas the User Behavior variable is obtained:

Judging from the PP image of the normality test plot, this study is feasible because it meets the normality assumption. In the Scatter Plot, the dots follow the data along the diagonal line and no dots move apart. This means that the data is normally distributed. Thus it can be ascertained that the data is good enough to be used in research for user behavior variables.

2) Multicollinearity Test

Multicollinearity test is a condition in which the regression model found a perfect or near perfect correlation between independent variables. To find a regression model that is free from multicollinearity, which has a VIF (Variance Inflation Factor) value of less than 10 and has a Tolerance number of more than 0.1.
From the above output it can be seen that the Tolerance value of the three variables is more than 0.10 and the VIF value is less than 10. Then it can be concluded that there is no multicollinearity problem.

3) Heteroscedasticity Test
Heteroscedasticity is a condition where in the regression model there is a variance between the residuals in one observation to another. A good regression model is not heteroscedasticity. Various kinds of heteroscedasticity tests, one of them is by testing gletsjer. If the significance value > 0.05, then there is no heteroscedasticity

4) Autocorrelation Test
The autocorrelation test is used to test whether in a linear regression model there is a correlation between the error of the intruder in the t period and the error in the t-1 period (before). To test autocorrelation, it can be seen by the value of Durbin Watson (DW), namely:
0 < DW < dL: means there is an autocorrelation
dL < DW < dU: means there is no conclusion (doubtful)
dU < DW < 4 – dU: means there is no autocorrelation
4 – dU < DW < 4 – dL: means there is no conclusion (doubtful)
4 – dL < DW < 4: means there is an autocorrelation
To find out the value of Durbin-Watson in discussing and testing it can be seen in the following Table 8:
Table 8.
Model Summaryb

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
<th>Durbin-Watson</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.601a</td>
<td>.361</td>
<td>.320</td>
<td>.904</td>
<td>1.966</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Social_Influence, Performance_Expectance, Business.Expectancy
b. Dependent Variable: User_Admission.Interest
Source: Primary Data, processed by SPSS, 2016

From the results of the above output, the DW value generated from the regression model is 1.966. While from the DW table with a significance of 0.05 and the amount of data (n) = 50, and k = 3 (k is the number of independent variables) obtained dL value of 1.4206 and dU of 1.6739 (see attachment). Because the DW value of 1.996 is in the area between dU and 4-dU or 1.4206 <1.966 <4 - 1.6739, it can be concluded that the linear regression does not have autocorrelation.

b. Multiple Linear Regression Analysis

The test used is multiple linear regression to determine the effect. Then by testing multiple linear regression will be seen in Table 9 as follows:

Table 9.
Coefficientsa

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td>t</td>
<td>Sig.</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>3.235</td>
<td>1.292</td>
<td>2.505</td>
<td>.016</td>
</tr>
<tr>
<td></td>
<td>Performance_Expectance</td>
<td>.477</td>
<td>.50</td>
<td>.158</td>
<td>.944</td>
</tr>
<tr>
<td></td>
<td>Business_Expansion</td>
<td>.151</td>
<td>.053</td>
<td>.517</td>
<td>2.834</td>
</tr>
<tr>
<td></td>
<td>Social_Influence</td>
<td>-.026</td>
<td>.067</td>
<td>-.059</td>
<td>-.382</td>
</tr>
</tbody>
</table>

a. Dependent Variable: User_Admission.Interest
Source: Primary Data, processed by SPSS, 2016

From the Coefficienta table above, it can be seen that from the regression equation formulated earlier, namely:

Y = α + β1X1, the equation obtained is as follows:

Y = 3.235 + 0.047 X1 + 0.151 X2 - 0.26 X3

From the above equation: Alpha value (α) of 3.235 shows that if the variable X is constant or constant, then the interest of user acceptance is 3.235. Each increase in the value of performance expectations (X1) increases by 1 then Y will rise assuming all variables are fixed, an increase in the value of business expectations (X2) rises by 1 then Y will rise and for the value of social influence (X3) rises by 1, then interest in acceptance the user will go down assuming that all variable values are fixed. That is, the variable performance expectations and business expectations have a positive effect while social influences have a negative influence. To assess the relationship between moderation variables with x and y variables, the results are processed as follows:
Based on the SPSS Model Summary output above, the R Square value of 0.361 indicates that the relationship between social influence, performance expectations and business expectations with user acceptance interest is 36.1% and the remaining 63.9% is influenced by other factors not included in the research model.

Based on the SPSS Model Summary output above, the R Square value of 0.375 indicates that the relationship between business Expansion and user acceptance interest with experience moderation variables is 37.5% and the remaining 62.5% is influenced by other factors not included in the research model. An increase occurred based on information obtained. This means that experience has an influence on the relationship between business expectations and user acceptance interest.

c. Hypothesis testing

1) T test

Partial test is used to determine the effect of leadership variables on work performance. Here are the results of the calculation of the t value and the significance level $\alpha = 0.05$.

Formulation of Hypothesis Testing Criteria:

- If t arithmetic $\leq t$ table then H_0 is accepted, meaning that the independent variable partially has no effect on the dependent variable.
- If t arithmetic $> T$ table then H_0 is rejected, meaning that the independent variable partially influences the dependent variable.

Table 12.

<table>
<thead>
<tr>
<th>Model</th>
<th>B</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>(Constant)</td>
<td></td>
<td>3,235</td>
<td>.1292</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Performance_ Expandance</td>
<td>.477</td>
<td>.50</td>
<td>.158</td>
<td>2.505</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Business_ Expansion</td>
<td>.151</td>
<td>.053</td>
<td>.517</td>
<td>2.834</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social_ Influence</td>
<td>-.026</td>
<td>.067</td>
<td>-.059</td>
<td>-.382</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Dependent Variable: User_Admission_ Interest

Source: Primary Data, processed by SPSS, 2016

Seen from the Coefficient Table above for growth it appears that the calculated t value for the performance expectation variable is 0.944, business expectation is 2.834 and the social influence is -0.382. The value of the performance expectancy and business expectation values is greater than t table of 0.0679 (df = 49), so it is interpreted that the dependent variable specifically business expectation and
performance expectancy affect the user acceptance interest. Whereas social influence has no influence on user acceptance interest.

2) F test

Simultaneous test is conducted to see the effect of independent variables on the dependent variable simultaneously. Where the proposed statistical hypothesis is significant level $\alpha = 0.05$.

H_0: $\beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$

H_a: $\beta_1 \neq \beta_2 \neq \beta_3 \neq \beta_4 \neq 0$

Formulation of Hypothesis Testing Criteria:
If F arithmetic \leq F table then H_0 is accepted, meaning that the independent variable simultaneously has no effect on the dependent variable.
If F arithmetic $> F$ table then H_0 is rejected, meaning that the independent variable simultaneously influences the dependent variable.

From the Anova table above it can be seen that the calculated F value = 8.678 and if seen at Residual 46 and Regression df 1 on the F table is 8.59 this means that H_0 is rejected and H_a is accepted it can be concluded that simultaneously the independent variable influences the dependent variable it means that business expectation, performance expectation and social influence influence the interest of user acceptance.

d. Determination Coefficient Test (R2)

The coefficient of determination (R2) is used to measure how far the regression model explains the variation of the dependent variable. The coefficient of determination is between zero and one. A small R2 value means that the ability of independent variables is very limited. A value close to one means that the independent variables provide almost all the information needed to predict variations in the dependent variable (Ghozali, 2013: 87).

Based on SPSS 16.0 calculations to produce the coefficient of determination are as follows:

Based on the SPSS Model Summary output above, the R Square value of 0.361, which indicates that the relationship between the leadership of the program head of subdivision to work performance is 36.1% and the remaining 63.9% is influenced by other factors not included in the research model.
5. Conclusion

After analyzing and testing hypotheses about the influence of the leadership of the program head of subdivision on work performance. The results and discussion used are in accordance with the objectives of the hypothesis carried out by multiple linear regression analysis, the conclusions can be drawn as follows:

a. Performance Expectation has a positive and significant effect on user acceptance interest
b. Business Expectation has a positive and significant effect on user acceptance interest
c. The experience of using computers has proven to moderate the relationship between performance expectations and business expectations with the interest in user acceptance.

6. References

Jurnal Mantik is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).