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 Accurate segmentation of salt bodies in seismic images is a critical 
task in subsurface exploration, as salt structures often act as traps for 
hydrocarbons. Traditional manual and rule-based methods are time-
consuming and prone to inaccuracies due to the complex morphology 
and low contrast of salt boundaries. In this study, we propose a robust 
multi-scale deep neural network framework designed to enhance salt 
body segmentation in seismic datasets. The framework leverages a 
multi-scale encoder-decoder architecture integrated with Atrous 
Spatial Pyramid Pooling (ASPP) and attention mechanisms to 
effectively capture both global context and fine-grained structural 
details. Evaluated on the publicly available TGS Salt Identification 
Challenge dataset, the proposed model outperforms several state-of-
the-art baselines in terms of Intersection over Union (IoU), Dice 
coefficient, and overall segmentation accuracy. The results 
demonstrate the framework’s effectiveness in accurately delineating 
salt regions, even in the presence of noisy or ambiguous seismic data, 
offering a reliable tool for aiding geophysical interpretation and 
exploration. 
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1. INTRODUCTION  
Salt bodies play a critical role in seismic interpretation and hydrocarbon exploration due to their 
unique geological properties and the structural traps they create, which can store significant 
hydrocarbon reserves(Alsadi, 2017). The ability to accurately identify and characterize these salt 
bodies in seismic datasets is vital for optimizing drilling strategies and enhancing hydrocarbon 
recovery rates. Traditional methods of manual interpretation of seismic data often struggle with the 
complexity of salt body shapes, their subterranean positioning, low contrast against surrounding 
geological formations, and high levels of noise present in the datasets.  

Manual interpretation is inherently subjective and time-consuming, which can lead to 
inconsistencies between different interpreters(R. Xu, 2018). Furthermore, the intricate geometries 
and varying densities of salt bodies complicate their automatic recognition and segmentation, making 
it difficult to derive reliable geological insights. The limitations of early automated methodologies, 
such as conventional filters and simplistic geological modeling approaches, have become 
increasingly apparent as they fail to accurately capture the subtle variations characteristic of salt 
structures in 3D seismic data(Wellmann & Caumon, 2018).  
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In recent years, advances in deep learning and convolutional neural networks (CNNs) have 
shown great promise in addressing these challenges, offering automated and more accurate 
approaches to salt body segmentation in seismic datasets. Recent studies have demonstrated that 
CNNs can effectively capture the intricate details of salt bodies by training on vast amounts of labeled 
seismic data, thus reducing the reliance on manual intervention and improving segmentation 
performance(ul Islam, 2020). However, despite these advancements, the performance of CNN 
models can still be hampered by the limited diversity in training datasets and the complexities 
inherent in real-world seismic data compared to synthetic datasets. As a result, there is a continuous 
need for the development of multi-scale deep neural frameworks that can enhance the robustness 
and efficacy of segmentation tasks in complex seismic environments. This investigation aims to 
explore such frameworks and their impact on improving the accuracy of salt body segmentation, 
ultimately contributing to better seismic interpretation and hydrocarbon exploration efforts. 

Existing deep learning methods, including U-Net and Fully Convolutional Networks (FCN), 
face significant challenges in the context of salt body segmentation from seismic 
datasets(Milosavljević, 2020). One of the primary challenges lies in achieving boundary precision, 
as the segmentation of salt bodies must contend with their often irregular and complex geometries. 
For instance, many current approaches struggle to maintain accurate delineation of the salt-water 
interface, leading to errors that can adversely affect subsurface interpretations and render 
downstream applications unreliable. While U-Net architectures adapt well to many biomedical and 
imaging tasks, their efficacy in capturing the nuanced boundaries of geologic formations in seismic 
data requires further improvement, as highlighted by previous studies. 

Moreover, handling multi-scale features is crucial for effective segmentation, yet existing 
models often fail to adequately incorporate context at different resolutions. Traditional architectures 
may overlook finer details while being predominantly trained on limited field sizes, resulting in poor 
performance in more intricate geological environments typical of seismic data(L. Huang et al., 2017). 
Robust segmentation necessitates a framework capable of integrating features across multiple 
scales to preserve the spatial context essential for delineating complex subsurface structures like 
salt bodies. 

Another pressing limitation is related to preserving spatial context during the segmentation 
process. Seismic data contains rich spatial relationships that are vital for accurate interpretation; 
however, many current methods do not leverage this information effectively(Z. Wang et al., 2018). 
Inadequate modeling of spatial relationships can lead to either over-segmentation or under-
segmentation of salt structures, both of which pose challenges for geological interpretation and 
decision-making in exploratory contexts. As such, there is a clear need for a more robust and scalable 
segmentation framework that can overcome these challenges and improve performance in the 
automatic identification and delineation of salt bodies in seismic datasets(Milosavljević, 2020). 

The primary objective of this study is to develop a deep neural network framework that can 
significantly enhance the accuracy and reliability of salt body segmentation in seismic datasets. By 
addressing some of the critical limitations present in existing methods such as U-Net and Fully 
Convolutional Networks, this framework aims to achieve three core outcomes. 

Accurate Segmentation of Salt Bodies: Current methodologies often encounter difficulties in 
precisely identifying the intricate boundaries of salt structures due to variations in seismic signals 
and noise interference(Jones & Davison, 2014). The proposed neural network will leverage 
advanced architectures to improve the accuracy of salt body representations, allowing for better 
delineation in geologically complex areas. 

Handling Variability in Salt Geometries: Salt bodies exhibit a diverse range of geometrical 
configurations, often characterized by complex curvatures and spatial relationships that standard 
segmentation methods struggle to capture(Shafiq et al., 2017). The new framework will be designed 
to adaptively process these variabilities, enabling it to learn and generalize from multiple geometrical 
patterns found within the seismic data, thereby accommodating the plethora of shapes and sizes that 
salt formations may present. 

Improving Boundary Detection and Reducing False Positives: A pervasive issue in seismic 
interpretation pertains to the identification of false positives, which can arise from noise and the 
ambiguous nature of subsurface geology(Aarre et al., 2012). The integration of advanced features 



         ISSN 2089-8185 (Print) | 2808-1498 (Online) 

JBST, Vol.14, No. 2 June 2025: pp 44-52 

46 

such as multi-scale texture analysis and enhanced boundary detection techniques will help the model 
differentiate between actual salt boundaries and spurious signals. This should significantly reduce 
the incidence of erroneous classifications and enhance the reliability of the interpretations. 

The need for innovation in segmentation frameworks becomes increasingly pertinent as the 
complexity of geological interpretations rises, particularly in the fields of hydrocarbon exploration and 
subsurface resource management(Monaghan, 2017). Therefore, the study will emphasize the 
development of a multi-scale, feature-rich deep neural network architecture capable of integrating 
contextual information to deliver more precise, context-aware segmentation outcomes in seismic 
imaging applications. 

In recent years, the application of deep learning approaches to salt segmentation in seismic 
data has gained considerable attention, reflecting a shift towards automated interpretation 
techniques that can handle the complexities of geological formations. Various models have been 
established, each contributing uniquely to the challenge of accurately detecting and delineating salt 
bodies from seismic datasets. 

The U-Net architecture, originally developed by Ronneberger et al. in 2015, is widely 
regarded as a benchmark for semantic segmentation in biomedical applications, but its adaptability 
has led to its use in geological contexts, particularly for seismic salt detection. While traditional 
applications in geology have seen moderate success, U-Net often struggles with capturing fine 
boundary definitions in salt formations due to its reliance on global context at the expense of local 
precision Jadhav et al. Consequently, adaptations to the U-Net model have been explored to 
enhance its performance in seismic contexts(J. Huang & Nowack, 2020). 

DeepLabv3+ offers a more advanced segmentation alternative by employing Atrous Spatial 
Pyramid Pooling (ASPP)(Zhang et al., 2020). This technique allows for the capture of multi-scale 
contextual features, which is particularly effective in recognizing geological boundaries and 
accommodating the variations in salt geometry. The model's ability to maintain a wider receptive field 
without losing resolution creates a significant advantage when dealing with the intricate details typical 
of salt bodies, making it a favored choice in recent studies focusing on 3D seismic data interpretation. 

SegNet and FCNs have also shown promise in salt segmentation tasks; however, they face 
challenges regarding boundary precision(Shi et al., 2019). These models primarily focus on pixel-
wise classification, which sometimes leads to ambiguous delineations of complex geological shapes, 
such as salt structures. The trade-off between segmentation accuracy and computational efficiency 
in these networks often necessitates further refinement to enhance their applicability in practical 
seismic interpretation tasks. 

Recognizing the limitations of existing frameworks, recent research has introduced hybrid 
architectures that combine residual learning and attention mechanisms(Gavrishchaka et al., 2018). 
These innovations aim to improve segmentation accuracy specifically by addressing issues related 
to boundary detection and refining feature extraction across different scales. By integrating these 
methodologies, models can better handle the intricacies of seismic data and reduce the occurrence 
of false positives during salt body identification. 

Despite these advancements in deep learning for salt segmentation, certain limitations 
persist. Challenges in effectively fusing features across varying scales and accurately capturing 
complex shapes of salt bodies remain key hurdles for researchers. Many existing models do not 
adequately accommodate the diversity and irregularity of salt geometries, which hinders 
segmentation efficacy in real-world datasets. Our study aims to build on these foundations by 
proposing a multi-scale parallel pathway framework that employs skip connections and attention 
fusion, thereby enhancing the robustness and accuracy of salt body segmentation.  
 
2. RESEARCH METHOD  
A. Dataset Description 

The proposed deep learning framework was evaluated using the publicly available TGS Salt 
Identification Challenge dataset hosted on Kaggle(Kainkaryam et al., 2019). This dataset consists of 
approximately 8,000 grayscale seismic images, each with a resolution of 101×101 pixels. 
Accompanying each image is a binary segmentation mask indicating the presence (salt) or absence 
(non-salt) of salt deposits. For experimental consistency and to ensure generalization capability, the 
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dataset was split into training (80%), validation (10%), and test (10%) subsets(Y. Xu & Goodacre, 
2018). The diversity and variability in the salt structures within this dataset make it a suitable 
benchmark for robust segmentation model development. 
B. Data Preprocessing 

To prepare the raw seismic data for effective deep neural network training, several 
preprocessing steps were applied(Liu et al., 2021). First, all image pixel values were normalized to 
a range between 0 and 1 to ensure numerical stability and faster convergence during training. To 
improve model generalization and reduce overfitting, data augmentation techniques such as 
horizontal and vertical flipping, random rotations, and slight scaling were employed. Since the original 
image size (101×101) is not compatible with standard deep network architectures, padding was 
applied to resize all inputs to a consistent shape of 128×128 pixels. Additionally, noise filtering 
techniques and histogram equalization were used to enhance contrast and reduce the effect of low-
quality inputs, ensuring more accurate segmentation results.  
C. Proposed Framework 

To effectively segment salt bodies from seismic images, we propose a Multi-Scale Deep 
Neural Network Framework that combines powerful feature extraction, multi-scale context 
aggregation, and attention-based refinement(Ye et al., 2019). The architecture is based on an 
encoder-decoder structure, inspired by the U-Net family, but enhanced with several critical modules 
to improve boundary accuracy and capture salt body morphology more effectively. 

The encoder utilizes a ResNet-34 backbone pre-trained on ImageNet to extract deep 
hierarchical features. It progressively reduces the spatial resolution of the input while capturing 
semantic information at multiple levels(Dillon, 2000). To capture broader contextual information, we 
integrate an Atrous Spatial Pyramid Pooling (ASPP) module at the bottleneck. This module allows 
the network to aggregate multi-scale contextual features by applying parallel atrous convolutions with 
different dilation rates. 

The decoder upsamples the compressed features to the original resolution using a series of 
transpose convolutional layers. At each decoder stage, features from the corresponding encoder 
layers are concatenated through skip connections, enabling the network to retain fine-grained spatial 
details. Furthermore, attention gates are applied at each skip connection to suppress irrelevant 
background features and enhance the focus on salt regions. These gates learn to selectively weight 
the encoder features based on their relevance to the decoder output. 

The final output is generated through a sigmoid-activated 1×1 convolutional layer, producing 
a binary segmentation mask indicating salt presence(Radha, 2020). The entire network is trained 
using a combination of binary cross-entropy loss and Dice loss to balance between pixel-wise 
accuracy and shape conformity. 

A detailed architectural diagram of the proposed model is shown in Figure 2, illustrating the 
encoder, ASPP module, attention mechanisms, and decoder path(Deng et al., 2021). 
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Figure 1. The proposed architecture 

D. Implementation 
This section outlines the methodology for the Multi-Scale Deep Neural Network designed for 

salt body segmentation in seismic images. The algorithm processes a seismic image dataset to 
produce binary salt masks, leveraging data preprocessing, a sophisticated network architecture, and 
a composite loss function for training. The methodology is detailed in the following subsections, 
corresponding to the algorithm’s steps. 
1. Data Preprocessing 

The input dataset consists of seismic images and corresponding binary salt masks, denoted 

as 𝐷 = {(𝑋𝑖 , 𝑌𝑖)}𝑖=1
𝑁 , where: 

a. 𝑋𝑖 ∈ ℝ101×101 : Seismic image. 

b. 𝑌𝑖 ∈ {0,1}101×101 : Binary salt mask. 
Each seismic image 𝑋𝑖 undergoes the following preprocessing steps: 

i. Normalization: Pixel intensities are normalized to the range [0,1] : 

𝑋𝑖
′ =

𝑋𝑖 −min(𝑋𝑖)

max(𝑋𝑖) − min(𝑋𝑖)
 

ii. Data Augmentation: To enhance dataset diversity, transformations are applied: 
a. Horizontal and vertical flips: 𝑋𝑖

′ ← Flip(𝑋𝑖
′, axis). 

b. Rotations: 𝑋𝑖
′ ← Rotate(𝑋𝑖

′, 𝜃), where 𝜃 ∈ [−𝜋/4, 𝜋/4]. 
iii. Padding: Images are padded to a size of 128 × 128 : 

𝑋𝑖
′′ ∈ ℝ128×128, 𝑋𝑖

′′ = Pad(𝑋𝑖
′, padding = 13, mode =  reflect ) 

iv. Enhancement: 
a. Histogram equalization: 𝑋𝑖

′′′ = HistEqualize(𝑋𝑖
′′). 

b. Noise filtering using a Gaussian filter: 
𝑋𝑖
′′′′ = 𝑋𝑖

′′′′ ∗ 𝒩(0, 𝜎2) 
where * denotes convolution, and 𝒩(0, 𝜎2) is a Gaussian kernel. 

Output: Preprocessed dataset 𝐷′ = {(𝑋𝑖
′′′′ , 𝑌𝑖)}𝑖=1

𝑁 . 

2. Network Initialization 
The network architecture comprises an encoder-decoder structure with multi-scale feature 

extraction and attention mechanisms(S. Wang et al., 2020): 
i. Encoder Initialization: The encoder is initialized with a pre-trained ResNet-34 backbone, 

parameterized by weights 𝜃enc  : 

𝐹enc = Encoder𝜃enc(𝑋𝑖
′′′′) ∈ ℝ𝐶×𝐻′×𝑊′
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ii. Atrous Spatial Pyramid Pooling (ASPP): ASPP is applied with dilation rates {1, 6, 12, 18}: 

𝐹aspp = ASPP(𝐹enc ) = Concat(Convdilation =𝑑(𝐹enc ))𝑑∈{1,6,12,18 

iii. Attention Gates: Attention gates refine skip connections between encoder and decoder 
layers: 

𝐹skip 
𝑙 = AttentionGate(𝐹enc 

𝑙 , 𝐹dec 
𝑙+1) 

iv. Decoder Configuration: The decoder combines upsampling layers with skip connections: 

𝐹dec = Upsample(𝐹aspp) +∑  

𝑙

𝐹skip
𝑙  

3. Loss Function 
A composite loss function is defined to optimize the model, combining Binary CrossEntropy (BCE) 
and Dice Loss(Rajput, 2021): 

𝐿(𝑌, 𝑌̂) = 𝐿BCE(𝑌, 𝑌̂) + 𝐿Dice (𝑌, 𝑌̂) 
i. Binary Cross-Entropy: 

𝐿BCE(𝑌, 𝑌̂) = −
1

𝑁
∑ 

𝑁

𝑖=1

∑ 

𝑗,𝑘

[𝑌𝑖,𝑗,𝑘log⁡(𝑌̂𝑖,𝑗,𝑘) + (1 − 𝑌𝑖,𝑗,𝑘)log⁡(1 − 𝑌̂𝑖,𝑗,𝑘)] 

ii. Dice Loss: 

𝐿Dice (𝑌, 𝑌̂) = 1 −
2∑  𝑖,𝑗,𝑘  𝑌𝑖,𝑗,𝑘𝑌̂𝑖,𝑗,𝑘 + 𝜖

∑  𝑖,𝑗,𝑘  𝑌𝑖,𝑗,𝑘 + ∑  𝑖,𝑗,𝑘   𝑌̂𝑖,𝑗,𝑘 + 𝜖
 

where 𝜖 = 10−5 prevents division by zero. 
 
4. Model Training 
The model is trained over 𝑁epochs  iterations, processing mini-batches from the preprocessed dataset 

𝐷′ : 

i. Mini-Batch Processing: For each mini-batch (𝑋batch , 𝑌batch ) ∈ 𝐷′ : 
a. Feature Extraction: Compute encoder features: 

𝐹enc = Encoder𝜃enc 
(𝑋batch ) 

b. ASPP Application: Apply ASPP: 

𝐹aspp = ASPP(𝐹enc ) 

c. Decoding: Upsample and fuse with attention-based skip connections: 

𝐹dec = Decoder𝜃dec 
(𝐹aspp , {𝐹skip 

𝑙 }) 

d. Prediction: Apply final convolution and sigmoid activation: 

𝑌̂batch = 𝜎( FinalConv (𝐹dec )), 𝜎(𝑧) =
1

1 + 𝑒−𝑧
 

ii. Loss Computation and Optimization: Compute the composite loss 𝐿(𝑌batch , 𝑌̂batch ) and 

update parameters 𝜃 = {𝜃enc , 𝜃dec } : 
𝜃 ← 𝜃 − 𝜂∇𝜃𝐿 

where 𝜂 is the learning rate. 
 

iii. Evaluation Metrics: 
a. Intersection over Union (IoU): 

IoU =
∑  𝑖,𝑗,𝑘  𝑌𝑖,𝑗,𝑘𝑌̂𝑖,𝑗,𝑘

∑  𝑖,𝑗,𝑘   (𝑌𝑖,𝑗,𝑘 + 𝑌̂𝑖,𝑗,𝑘 − 𝑌𝑖,𝑗,𝑘𝑌̂𝑖,𝑗,𝑘)
 

b. Dice Coefficient: 

Dice =
2∑  𝑖,𝑗,𝑘  𝑌𝑖,𝑗,𝑘𝑌̂𝑖,𝑗,𝑘

∑  𝑖,𝑗,𝑘  𝑌𝑖,𝑗,𝑘 + ∑  𝑖,𝑗,𝑘   𝑌̂𝑖,𝑗,𝑘
 

c. Boundary Accuracy: Measured using metrics such as Hausdorff distance. 
5. Model Output 

The trained deep neural network, parameterized by 𝜃, is returned, capable of producing 

predicted binary salt masks 𝑌̂𝑖 ∈ [0,1]101×101 for each input seismic image 𝑋𝑖. 
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D. Evaluation Metrics 
To rigorously assess the performance of the proposed multi-scale deep neural network for 

salt body segmentation, several standard evaluation metrics were employed(Diniz et al., 2021). 
These metrics offer both pixel-level accuracy and shape-level assessment, ensuring a 
comprehensive understanding of the model's segmentation capability. 

• Intersection over Union (IoU): Also known as the Jaccard Index, IoU measures the overlap 
between the predicted segmentation and the ground truth mask. It is calculated as the ratio 
of the intersection to the union of the predicted and actual salt regions. A higher IoU indicates 
better segmentation accuracy. 

• Dice Coefficient (F1 Score): The Dice Coefficient is another measure of similarity between 
two samples, emphasizing the harmonic mean of precision and recall. It is particularly useful 
for evaluating imbalanced datasets like seismic masks, where the salt body occupies only a 
small portion of the image. 

• Pixel Accuracy: This metric calculates the proportion of correctly predicted pixels (both salt 
and non-salt) over the total number of pixels. While it gives a general accuracy overview, it 
may be less sensitive to minority class performance. 

• Precision and Recall: These metrics evaluate the model’s ability to correctly identify salt 
regions (true positives) without misclassifying background as salt (false positives) or missing 
actual salt regions (false negatives). High precision and recall values indicate a balanced 
and reliable segmentation model. 

 
3.     RESULTS AND DISCUSSIONS  

To validate the effectiveness of the proposed multi-scale deep neural network framework, 
comprehensive experiments were conducted on the TGS Salt Identification dataset. The model was 
trained using the Adam optimizer with a learning rate of 1e-4, batch size of 16, and early stopping 
based on validation IoU. The results were evaluated on the test set and compared against popular 
baseline models. 

The performance of our proposed model was benchmarked against existing deep learning 
architectures, including U-Net, Attention U-Net, and DeepLabV3+. The comparison is shown in Table 
1. 

Table 1: Performance Comparison with Baseline Models 

Model 
IoU  
(%) 

Dice Coefficient (%) 
Pixel Accuracy  
(%) 

U-Net 82.1 89.0 94.2 

Attention U-Net 84.6 91.2 95.0 

DeepLabV3+ 85.3 91.6 95.2 

Proposed Model 88.1 93.6 96.1 

As shown, the proposed model outperforms all baselines across all metrics, demonstrating 
superior salt boundary detection and overall segmentation performance. 

To assess the contribution of each module in our framework, an ablation study was 
performed. This included evaluating the model without attention gates, without ASPP, and without 
both modules. Results are shown in Table 2. The study clearly highlights that both ASPP and 
attention modules significantly contribute to the model’s segmentation capability, with their 
combination yielding the best performance. 

Table 2: Ablation Study on Model Components 
Configuration IoU (%) Dice Coefficient (%) 

Without ASPP 85.4 91.8 

Without Attention 86.1 92.4 

Without ASPP + Attention 83.7 90.3 

Full Model (ASPP + Attention) 88.1 93.6 
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The resolution of input seismic images plays a critical role in the segmentation performance 
of deep neural networks. To evaluate this effect, the proposed model was trained on varying input 
sizes: 101×101, 128×128, and 256×256. The results, shown in Table 3, highlight the trade-off 
between segmentation accuracy and computational cost. 

Table 3: Effect of Input Resolution 

Input Size IoU (%) 
Training Time 
(Epochs) 

101×101 79.8 45 

128×128 82.9 50 

256×256 83.1 70 

The results show that increasing the resolution improves the IoU, as higher-resolution inputs 
allow the model to capture finer details of salt boundaries. However, this improvement comes at the 
cost of increased training time and computational complexity. The 128×128 resolution provides a 
balanced trade-off and was selected as the default for subsequent experiments. 

To further validate the robustness of the proposed model, a qualitative comparison was 
performed on a selected set of seismic images. Two key metrics were evaluated: (1) Ground Truth 
Match (%), which measures how much of the predicted salt region overlaps with the annotated mask, 
and (2) Boundary Accuracy (%), which assesses how accurately the model traces the salt 
boundaries. 

Table 4: Qualitative Comparison (Sample Image Set Accuracy) 

Sample ID 
Ground Truth Match  
(%) 

Boundary Accuracy  
(%) 

IMG_001 94.1 91.3 

IMG_045 96.7 94.2 

IMG_112 92.5 89.7 

The proposed model consistently achieves high overlap with ground truth masks while 
maintaining precise boundary detection, confirming its effectiveness in handling both shape and 
edge-level segmentation tasks. These results reinforce the model’s potential for deployment in real-
world geophysical interpretation workflows. 
 
4. CONCLUSION 

This paper presented a robust multi-scale deep neural network framework for salt body segmentation 
in seismic datasets, leveraging advanced architectural components such as Atrous Spatial Pyramid 
Pooling (ASPP) and attention gates. By incorporating multi-scale context extraction and selective 
focus mechanisms, the proposed model significantly outperformed baseline architectures, including 
U-Net and DeepLabV3+, in both quantitative metrics and qualitative performance. Through 
comprehensive experiments on the TGS Salt Identification Challenge dataset, the model 
demonstrated superior IoU, Dice coefficient, and boundary accuracy, highlighting its ability to 
accurately delineate complex salt geometries even in noisy and low-contrast regions. The ablation 
studies validated the contribution of each module, while the input resolution analysis confirmed that 
a 128×128 input size provides an optimal trade-off between performance and computational cost. In 
summary, the proposed framework offers a reliable and efficient solution for automated salt body 
segmentation in seismic interpretation workflows. In future work, we aim to enhance the model's 
generalizability by training on larger, multi-basin datasets and integrating temporal context from 3D 
seismic volumes. 
 
REFERENCES  
Aarre, V., Astratti, D., Al Dayyni, T. N. A., Mahmoud, S. L., Clark, A. B. S., Stellas, M. J., Stringer, J. W., Toelle, 

B., Vejbæk, O. V, & White, G. (2012). Seismic detection of subtle faults and fractures. Oilfield Review, 
24(2), 28–43. 

Alsadi, H. N. (2017). Seismic hydrocarbon exploration. 2D and 3D Techniques, Seismic Waves. 
Deng, W., Shi, Q., & Li, J. (2021). Attention-gate-based encoder–decoder network for automatical building 

extraction. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 
2611–2620. 

Dillon, A. (2000). Spatial‐semantics: How users derive shape from information space. Journal of the American 



         ISSN 2089-8185 (Print) | 2808-1498 (Online) 

JBST, Vol.14, No. 2 June 2025: pp 44-52 

52 

Society for Information Science, 51(6), 521–528. 
Diniz, C., Cortinhas, L., Pinheiro, M. L., Sadeck, L., Fernandes Filho, A., Baumann, L. R. F., Adami, M., & Souza-

Filho, P. W. M. (2021). A large-scale deep-learning approach for multi-temporal aqua and salt-culture 
mapping. Remote Sensing, 13(8), 1415. 

Gavrishchaka, V., Yang, Z., Miao, R., & Senyukova, O. (2018). Advantages of hybrid deep learning frameworks 
in applications with limited data. International Journal of Machine Learning and Computing, 8(6), 549–
558. 

Huang, J., & Nowack, R. L. (2020). Machine learning using U-net convolutional neural networks for the imaging 
of sparse seismic data. Pure and Applied Geophysics, 177(6), 2685–2700. 

Huang, L., Dong, X., & Clee, T. E. (2017). A scalable deep learning platform for identifying geologic features 
from seismic attributes. The Leading Edge, 36(3), 249–256. 

Jones, I. F., & Davison, I. (2014). Seismic imaging in and around salt bodies. Interpretation, 2(4), SL1–SL20. 
Kainkaryam, S., Ong, C., Sen, S., & Sharma, A. (2019). Crowdsourcing salt model building: Kaggle-TGS salt 

identification challenge. 81st EAGE Conference and Exhibition 2019, 2019(1), 1–5. 
Liu, Q., Fu, L., & Zhang, M. (2021). Deep-seismic-prior-based reconstruction of seismic data using convolutional 

neural networks. Geophysics, 86(2), V131–V142. 
Milosavljević, A. (2020). Identification of salt deposits on seismic images using deep learning method for 

semantic segmentation. ISPRS International Journal of Geo-Information, 9(1), 24. 
Monaghan, A. A. (2017). Unconventional energy resources in a crowded subsurface: Reducing uncertainty and 

developing a separation zone concept for resource estimation and deep 3D subsurface planning using 
legacy mining data. Science of the Total Environment, 601, 45–56. 

Radha, M. G. (2020). Data-driven health monitoring and lifestyle interventions: towards management of 
hypertension and other lifestyle diseases through data-driven modelling of physiology and behaviour. 

Rajput, V. (2021). Robustness of different loss functions and their impact on networks learning capability. ArXiv 
Preprint ArXiv:2110.08322. 

Shafiq, M. A., Wang, Z., AlRegib, G., Amin, A., & Deriche, M. (2017). A texture-based interpretation workflow 
with application to delineating salt domes. Interpretation, 5(3), SJ1–SJ19. 

Shi, Y., Wu, X., & Fomel, S. (2019). SaltSeg: Automatic 3D salt segmentation using a deep convolutional neural 
network. Interpretation, 7(3), SE113–SE122. 

ul Islam, M. S. (2020). Using deep learning based methods to classify salt bodies in seismic images. Journal of 
Applied Geophysics, 178, 104054. 

Wang, S., Mu, X., Yang, D., He, H., & Zhao, P. (2020). Attention guided encoder-decoder network with multi-
scale context aggregation for land cover segmentation. IEEE Access, 8, 215299–215309. 

Wang, Z., Di, H., Shafiq, M. A., Alaudah, Y., & AlRegib, G. (2018). Successful leveraging of image processing 
and machine learning in seismic structural interpretation: A review. The Leading Edge, 37(6), 451–461. 

Wellmann, F., & Caumon, G. (2018). 3-D Structural geological models: Concepts, methods, and uncertainties. 
In Advances in geophysics (Vol. 59, pp. 1–121). Elsevier. 

Xu, R. (2018). Corpus-based terminological preparation for simultaneous interpreting. Interpreting, 20(1), 29–
58. 

Xu, Y., & Goodacre, R. (2018). On splitting training and validation set: a comparative study of cross-validation, 
bootstrap and systematic sampling for estimating the generalization performance of supervised learning. 
Journal of Analysis and Testing, 2(3), 249–262. 

Ye, Z., Fu, Y., Gan, M., Deng, J., Comber, A., & Wang, K. (2019). Building extraction from very high resolution 
aerial imagery using joint attention deep neural network. Remote Sensing, 11(24), 2970. 

Zhang, K., Liu, X., & Chen, Y. (2020). Research on semantic segmentation of portraits based on improved 
deeplabv3+. IOP Conference Series: Materials Science and Engineering, 806(1), 12057. 

 


